Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancer Gene Ther ; 31(1): 58-68, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37945970

RESUMO

Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Epitopos , Herpesvirus Humano 4/genética , Neoplasias/terapia , Epitopos de Linfócito T
2.
Front Immunol ; 14: 1183914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261346

RESUMO

Therapeutic antibody-epitope conjugates (AECs) are promising new modalities to deliver immunogenic epitopes and redirect virus-specific T-cell activity to cancer cells. Nevertheless, many aspects of these antibody conjugates require optimization to increase their efficacy. Here we evaluated different strategies to conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the antibodies cetuximab and trastuzumab. Three approaches were taken: chemical conjugation (i.e. a thiol-maleimide reaction) to reduced cysteine side chains, heavy chain C-terminal enzymatic conjugation using sortase A, and genetic fusions, to the heavy chain (HC) C-terminus. All three conjugates were capable of T-cell activation and target-cell killing via proteolytic release of the EBV epitope and expression of the antibody target was a requirement for T-cell activation. Moreover, AECs generated with a second immunogenic epitope derived from CMV (NLV/A2) were able to deliver and redirect CMV specific T-cells, in which the amino sequence of the attached peptide appeared to influence the efficiency of epitope delivery. Therefore, screening of multiple protease cleavage sites and epitopes attached to the antibody is necessary. Taken together, our data demonstrated that multiple AECs could sensitize cancer cells to virus-specific T cells.


Assuntos
Infecções por Citomegalovirus , Imunoconjugados , Neoplasias , Humanos , Epitopos , Peptídeos , Anticorpos , Peptídeo Hidrolases , Neoplasias/terapia
3.
Hum Gene Ther ; 32(19-20): 1171-1185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34405701

RESUMO

Oncolytic viruses are promising agents for cancer therapy because they selectively infect and kill tumor cells, and because they trigger immune responses that can boost anticancer immunity. Key to the latter process is the production of type I interferons (IFN-Is) that can turn noninflamed "cold" tumors into "hot" ones. Besides this desired anticancer effect, IFN-Is are antiviral and successful oncolytic virotherapy thus relies on tightly controlled IFN-I levels. This requires a profound understanding of when and how tumor cells induce IFN-I in response to specific viruses. In this study, we uncovered two key factors that augment IFN-I production in transformed human myeloid cells infected with a tumor-selective reovirus. Viral replication and IFN-α/ß receptor (IFNAR) signaling progressively reinforced the levels of IFN-I expressed by infected cells. Mechanistically, both augmented the activation of interferon regulatory factor 3, a key transcription factor for IFNß expression. Our findings imply that reovirus-permissive tumor cells themselves are a major source of IFN-I expression. As tumors can perturb the IFNAR pathway for their own survival, reovirus-exposed IFNAR-unresponsive tumors may need additional therapeutic intervention to promote the secretion of sufficient IFN-I into the tumor microenvironment. Our increased understanding of the parameters that affect reovirus-induced IFN-I levels could aid in the design of tailored virus-based cancer therapies.


Assuntos
Interferon Tipo I , Humanos , Interferon Tipo I/genética , Interferon-alfa/genética , Interferon beta/genética , Transdução de Sinais , Replicação Viral
4.
J Biol Chem ; 295(42): 14325-14342, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32796029

RESUMO

Surface-exposed Toll-like receptors (TLRs) such as TLR2 and TLR4 survey the extracellular environment for pathogens. TLR activation initiates the production of various cytokines and chemokines, including type I interferons (IFN-I). Downstream of TLR4, IFNß secretion is only vigorously triggered in macrophages when the receptor undergoes endocytosis and switches signaling adaptor; surface TLR4 engagement predominantly induces proinflammatory cytokines via the signaling adaptor MyD88. It is unclear whether this dichotomy is generally applicable to other TLRs, cell types, or differentiation states. Here, we report that diverse TLR2 ligands induce an IFN-I response in human monocyte-like cells, but not in differentiated macrophages. This TLR2-dependent IFN-I signaling originates from the cell surface and depends on MyD88; it involves combined activation of the transcription factors IRF3 and NF-κB, driven by the kinases TBK1 and TAK1-IKKß, respectively. TLR2-stimulated monocytes produced modest IFNß levels that caused productive downstream signaling, reflected by STAT1 phosphorylation and expression of numerous interferon-stimulated genes. Our findings reveal that the outcome of TLR2 signaling includes an IFN-I response in human monocytes, which is lost upon macrophage differentiation, and differs mechanistically from IFN-I-induction through TLR4. These findings point to molecular mechanisms tailored to the differentiation state of a cell and the nature of receptors activated to control and limit TLR-triggered IFN-I responses.


Assuntos
Interferon Tipo I/metabolismo , Receptor 2 Toll-Like/metabolismo , Diferenciação Celular , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon beta/genética , Interferon beta/metabolismo , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/química , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
5.
Bioconjug Chem ; 31(6): 1685-1692, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32510940

RESUMO

Toll-like receptors (TLRs) are key pathogen sensors of the immune system. Their activation results in the production of cytokines, chemokines, and costimulatory molecules that are crucial for innate and adaptive immune responses. In recent years, specific (sub)-cellular location and timing of TLR activation have emerged as parameters for defining the signaling outcome and magnitude. To study the subtlety of this signaling, we here report a new molecular tool to control the activation of TLR2 via "click-to-release"-chemistry. We conjugated a bioorthogonal trans-cyclooctene (TCO) protecting group via solid support to a critical position within a synthetic TLR2/6 ligand to render the compound unable to initiate signaling. The TCO-group could then be conditionally removed upon addition of a tetrazine, resulting in restored agonist activity and TLR2 activation. This approach was validated on RAW264.7 macrophages and various murine primary immune cells as well as human cell line systems, demonstrating that TCO-caging constitutes a versatile approach for generating chemically controllable TLR2 agonists.


Assuntos
Ciclo-Octanos/química , Receptor 2 Toll-Like/metabolismo , Animais , Desenho de Fármacos , Humanos , Ligantes , Camundongos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo , Receptor 2 Toll-Like/agonistas
6.
Cytokine Growth Factor Rev ; 55: 1-14, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32563552

RESUMO

Rapid detection of microbes is crucial for eliciting an effective immune response. Innate immune receptors survey the intracellular and extracellular environment for signs of a microbial infection. When they detect a pathogen-associated molecular pattern (PAMP), such as viral DNA, they alarm the cell about the ongoing infection. The central signaling hub in sensing of viral DNA is the stimulator of interferon genes (STING). Upon activation, STING induces downstream signaling events that ultimately result in the production of type I interferons (IFN I), important cytokines in antimicrobial defense, in particular towards viruses. In this review, we describe the molecular features of STING, including its upstream sensors and ligands, its sequence and structural conservation, common polymorphisms, and its localization. We further highlight how STING activation requires a careful balance: its activity is essential for antiviral defense, but unwanted activation through mutations or accidental recognition of self-derived DNA causes autoinflammatory diseases. Several mechanisms, such as post-translational modifications, ensure this balance by fine-tuning STING activation. Finally, we discuss how viruses evade detection of their genomes by either exploiting cells that lack a functional DNA sensing pathway as a niche or by interfering with STING activation through viral evasion molecules. Insight into STING's exact mechanisms in health and disease will guide the development of novel clinical interventions for microbial infections, autoinflammatory diseases, and beyond.


Assuntos
Imunidade Inata , Inflamação , Interferon Tipo I , Proteínas de Membrana , Citocinas , Inflamação/imunologia , Proteínas de Membrana/imunologia , Transdução de Sinais
7.
Mol Immunol ; 91: 225-237, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28968560

RESUMO

Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence.


Assuntos
Linfócitos B/imunologia , DNA/imunologia , Interferon Tipo I/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Transformada , DNA/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Masculino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo
8.
Cell Chem Biol ; 24(7): 801-812, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28648377

RESUMO

The detection of infectious pathogens is essential for the induction of antimicrobial immune responses. The innate immune system detects a wide array of microbes using a limited set of pattern-recognition receptors (PRRs). One family of PRRs with a central role in innate immunity are the Toll-like receptors (TLRs). Upon ligation, these receptors initiate signaling pathways culminating in the release of pro-inflammatory cytokines and/or type I interferons (IFN-I). In recent years, it has become evident that the specific subcellular location and timing of TLR activation affect signaling outcome. The subtlety of this signaling has led to a growing demand for chemical tools that provide the ability to conditionally control TLR activation. In this review, we survey current models for TLR signaling in time and space, discuss how chemical tools have contributed to our understanding of TLR ligands, and describe how they can aid further elucidation of the dynamic aspects of TLR signaling.


Assuntos
Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Sítios de Ligação , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Ligantes , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/química
9.
J Immunol ; 198(10): 4062-4073, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28416598

RESUMO

Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.


Assuntos
Herpesvirus Humano 4/genética , Interferon Tipo I/metabolismo , MicroRNAs/metabolismo , RNA Viral/metabolismo , Transdução de Sinais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/imunologia , MicroRNAs/genética , RNA Viral/genética , Replicação Viral
10.
PLoS Pathog ; 12(4): e1005550, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27077376

RESUMO

Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150's cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle.


Assuntos
Apresentação de Antígeno/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Evasão da Resposta Imune/imunologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas Virais/imunologia , Western Blotting , Citometria de Fluxo , Herpesvirus Humano 4/imunologia , Humanos , Microscopia Confocal , Linfócitos T/imunologia , Transdução Genética
11.
Curr Top Microbiol Immunol ; 391: 355-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26428381

RESUMO

Epstein-Bar virus (EBV) is widespread within the human population with over 90% of adults being infected. In response to primary EBV infection, the host mounts an antiviral immune response comprising both innate and adaptive effector functions. Although the immune system can control EBV infection to a large extent, the virus is not cleared. Instead, EBV establishes a latent infection in B lymphocytes characterized by limited viral gene expression. For the production of new viral progeny, EBV reactivates from these latently infected cells. During the productive phase of infection, a repertoire of over 80 EBV gene products is expressed, presenting a vast number of viral antigens to the primed immune system. In particular the EBV-specific CD4+ and CD8+ memory T lymphocytes can respond within hours, potentially destroying the virus-producing cells before viral replication is completed and viral particles have been released. Preceding the adaptive immune response, potent innate immune mechanisms provide a first line of defense during primary and recurrent infections. In spite of this broad range of antiviral immune effector mechanisms, EBV persists for life and continues to replicate. Studies performed over the past decades have revealed a wide array of viral gene products interfering with both innate and adaptive immunity. These include EBV-encoded proteins as well as small noncoding RNAs with immune-evasive properties. The current review presents an overview of the evasion strategies that are employed by EBV to facilitate immune escape during latency and productive infection. These evasion mechanisms may also compromise the elimination of EBV-transformed cells, and thus contribute to malignancies associated with EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Evasão da Resposta Imune , Animais , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Humanos
12.
PLoS Pathog ; 11(4): e1004743, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25880312

RESUMO

Herpesviruses are large DNA viruses that are highly abundant within their host populations. Even in the presence of a healthy immune system, these viruses manage to cause lifelong infections. This persistence is partially mediated by the virus entering latency, a phase of infection characterized by limited viral protein expression. Moreover, herpesviruses have devoted a significant part of their coding capacity to immune evasion strategies. It is believed that the close coexistence of herpesviruses and their hosts has resulted in the evolution of viral proteins that specifically attack multiple arms of the host immune system. Cytotoxic T lymphocytes (CTLs) play an important role in antiviral immunity. CTLs recognize their target through viral peptides presented in the context of MHC molecules at the cell surface. Every herpesvirus studied to date encodes multiple immune evasion molecules that effectively interfere with specific steps of the MHC class I antigen presentation pathway. The transporter associated with antigen processing (TAP) plays a key role in the loading of viral peptides onto MHC class I molecules. This is reflected by the numerous ways herpesviruses have developed to block TAP function. In this review, we describe the characteristics and mechanisms of action of all known virus-encoded TAP inhibitors. Orthologs of these proteins encoded by related viruses are identified, and the conservation of TAP inhibition is discussed. A phylogenetic analysis of members of the family Herpesviridae is included to study the origin of these molecules. In addition, we discuss the characteristics of the first TAP inhibitor identified outside the herpesvirus family, namely, in cowpox virus. The strategies of TAP inhibition employed by viruses are very distinct and are likely to have been acquired independently during evolution. These findings and the recent discovery of a non-herpesvirus TAP inhibitor represent a striking example of functional convergent evolution.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Evasão da Resposta Imune/imunologia , Proteínas Virais/imunologia , Viroses/imunologia , Animais , Evolução Biológica , Humanos , Evasão da Resposta Imune/genética , Filogenia , Viroses/genética , Latência Viral/imunologia
13.
J Gen Virol ; 96(Pt 4): 858-865, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502648

RESUMO

During productive infection with Epstein-Barr virus (EBV), a dramatic suppression of cellular protein expression is caused by the viral alkaline exonuclease BGLF5. Among the proteins downregulated by BGLF5 are multiple immune components. Here, we show that shutoff reduces expression of the innate EBV-sensing Toll-like receptor-2 and the lipid antigen-presenting CD1d molecule, thereby identifying these proteins as novel targets of BGLF5. To silence BGLF5 expression in B cells undergoing productive EBV infection, we employed an shRNA approach. Viral replication still occurred in these cells, albeit with reduced late gene expression. Surface levels of a group of proteins, including immunologically relevant molecules such as CD1d and HLA class I and class II, were only partly rescued by depletion of BGLF5, suggesting that additional viral gene products interfere with their expression. Our combined approach thus provides a means to unmask novel EBV (innate) immune evasion strategies that may operate in productively infected B cells.


Assuntos
Linfócitos B/imunologia , Linfócitos B/virologia , Desoxirribonucleases/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Proteínas Virais/imunologia , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Linhagem Celular , Desoxirribonucleases/genética , Herpesvirus Humano 4/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Proteínas Virais/genética , Replicação Viral/genética , Replicação Viral/imunologia
14.
J Immunol ; 193(4): 1578-89, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024387

RESUMO

CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Vírus da Varíola Bovina/imunologia , Evasão da Resposta Imune/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Vírus da Varíola Bovina/genética , Retículo Endoplasmático/imunologia , Mutação da Fase de Leitura , Células HEK293 , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ligação Proteica/imunologia , Transporte Proteico/imunologia , Proteínas Virais/genética
15.
Nat Commun ; 5: 3832, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24807418

RESUMO

Misfolded ER proteins are retrotranslocated into the cytosol for degradation via the ubiquitin-proteasome system. The human cytomegalovirus protein US11 exploits this ER-associated protein degradation (ERAD) pathway to downregulate HLA class I molecules in virus-infected cells, thereby evading elimination by cytotoxic T-lymphocytes. US11-mediated degradation of HLA class I has been instrumental in the identification of key components of mammalian ERAD, including Derlin-1, p97, VIMP and SEL1L. Despite this, the process governing retrotranslocation of the substrate is still poorly understood. Here using a high-coverage genome-wide shRNA library, we identify the uncharacterized protein TMEM129 and the ubiquitin-conjugating E2 enzyme UBE2J2 to be essential for US11-mediated HLA class I downregulation. TMEM129 is an unconventional C4C4-type RING finger E3 ubiquitin ligase that resides within a complex containing various other ERAD components, including Derlin-1, Derlin-2, VIMP and p97, indicating that TMEM129 is an integral part of the ER-resident dislocation complex mediating US11-induced HLA class I degradation.


Assuntos
Antígenos de Histocompatibilidade Classe I/biossíntese , Interferência de RNA , Proteínas de Ligação a RNA/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Virais/genética , Adenosina Trifosfatases/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citomegalovirus/genética , Infecções por Citomegalovirus , Regulação para Baixo , Retículo Endoplasmático/patologia , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Dobramento de Proteína , Proteínas/genética , RNA Interferente Pequeno , Selenoproteínas/genética , Células U937
16.
PLoS Pathog ; 10(2): e1003960, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586164

RESUMO

Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Evasão da Resposta Imune/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Ensaio de Imunoadsorção Enzimática , Infecções por Vírus Epstein-Barr/metabolismo , Citometria de Fluxo , Imunofluorescência , Herpesvirus Humano 4 , Humanos , Imunidade Inata , Immunoblotting , Receptores Toll-Like/metabolismo , Transfecção , Proteínas Virais Reguladoras e Acessórias/metabolismo
17.
Methods Mol Biol ; 960: 127-136, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23329483

RESUMO

The peptide content of MHC class I molecules present at the cell surface is monitored by surveilling CD8(+) cytotoxic T cells. In case of a viral infection, a proportion of the MHC class I molecules will carry peptides derived from viral proteins. This allows the CD8(+) T cells to recognize and eliminate virus-infected cells. This highly sensitive detection system of the host is counteracted by viruses, which have acquired functions to downregulate cell surface expression of MHC class I molecules. In this chapter, we describe a flow cytometry-based method to identify viral gene product(s) responsible for evasion from MHC class I-restricted antigen presentation. To this end, cells are transiently transfected using polyethylenimine (PEI) as a transfection reagent, followed by cell surface staining with MHC class I-specific monoclonal antibodies. Once viral proteins responsible for MHC class I downregulation have been identified, their mechanism of action can be characterized. Identification and characterization of virus-encoded MHC class I inhibitors augments our understanding of virus-host interactions and often provides new insights into antigen processing and presentation pathways, including related cellular processes such as protein trafficking and degradation.


Assuntos
Apresentação de Antígeno , Citometria de Fluxo/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Lentivirus/fisiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Lentivirus/genética , Coloração e Rotulagem , Transfecção
18.
J Immunol ; 190(4): 1672-84, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23315076

RESUMO

Coevolution of herpesviruses and their hosts has driven the development of both host antiviral mechanisms to detect and eliminate infected cells and viral ploys to escape immune surveillance. Among the immune-evasion strategies used by the lymphocryptovirus (γ(1)-herpesvirus) EBV is the downregulation of surface HLA class I expression by the virally encoded G protein-coupled receptor BILF1, thereby impeding presentation of viral Ags and cytotoxic T cell recognition of the infected cell. In this study, we show EBV BILF1 to be expressed early in the viral lytic cycle. BILF1 targets a broad range of HLA class I molecules, including multiple HLA-A and -B types and HLA-E. In contrast, HLA-C was only marginally affected. We advance the mechanistic understanding of the process by showing that the cytoplasmic C-terminal tail of EBV BILF1 is required for reducing surface HLA class I expression. Susceptibility to BILF1-mediated downregulation, in turn, is conferred by specific residues in the intracellular tail of the HLA class I H chain. Finally, we explore the evolution of BILF1 within the lymphocryptovirus genus. Although the homolog of BILF1 encoded by the lymphocryptovirus infecting Old World rhesus primates shares the ability of EBV to downregulate cell surface HLA class I expression, this function is not possessed by New World marmoset lymphocryptovirus BILF1. Therefore, this study furthers our knowledge of the evolution of immunoevasive functions by the lymphocryptovirus genus of herpesviruses.


Assuntos
Citoplasma/imunologia , Regulação para Baixo/imunologia , Evolução Molecular , Herpesvirus Humano 4/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Receptores Acoplados a Proteínas G/fisiologia , Proteínas Virais/fisiologia , Alelos , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Regulação Viral da Expressão Gênica/imunologia , Marcação de Genes , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Evasão da Resposta Imune , Glicoproteínas de Membrana/biossíntese , Fragmentos de Peptídeos/fisiologia , Transdução de Sinais/imunologia
19.
Mol Immunol ; 55(2): 139-42, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23141382

RESUMO

Following primary infection, herpesviruses persist for life in their hosts, even when vigorous anti-viral immunity has been induced. Failure of the host immune system to eliminate infected cells is facilitated by highly effective immune evasion strategies acquired by these herpesviruses during millions of years of co-evolution with their hosts. Here, we review the mechanisms of action of viral gene products that lead to cytotoxic T cell evasion through interference with the function of the transporter associated with antigen processing, TAP. The viral TAP inhibitors impede transport of peptides from the cytosol into the ER lumen, thereby preventing peptide loading onto MHC class I complexes. Recent insights have revealed a pattern of functional convergent evolution. In every herpesvirus subfamily, inhibitors of TAP function have been identified that are, surprisingly, unrelated in genome location, structure, and mechanism of action. Recently, cowpox virus has also been found to encode a TAP inhibitor. Expanding our knowledge on how viruses perturb antigen presentation, in particular by targeting TAP, not only provides information on viral pathogenesis, but also reveals novel aspects of the cellular processes corrupted by these viruses, notably the translocation of peptides by the ATP-binding cassette (ABC) transporter TAP. As the various TAP inhibitors are anticipated to impede discrete conformational transitions it is expected that crystal structures of TAP-inhibitor complexes will reveal valuable structural information on the actual mechanism of peptide translocation by TAP. Viral TAP inhibitors are also used for various (clinical) applications, for example, as effective tools in antigen presentation studies and as immunomodulators in immunotherapy for cancer, heterologous vaccination, and transplant protection.


Assuntos
Apresentação de Antígeno , Herpesviridae/imunologia , Herpesviridae/patogenicidade , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/imunologia , Vírus da Varíola Bovina/metabolismo , Herpesviridae/genética , Herpesviridae/metabolismo , Humanos , Evasão da Resposta Imune , Linfócitos T Citotóxicos/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
20.
Viruses ; 4(10): 2379-99, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23202469

RESUMO

The immune system plays a major role in protecting the host against viral infection. Rapid initial protection is conveyed by innate immune cells, while adaptive immunity (including T lymphocytes) requires several days to develop, yet provides high specificity and long-lasting memory. Invariant natural killer T (iNKT) cells are an unusual subset of T lymphocytes, expressing a semi-invariant T cell receptor together with markers of the innate NK cell lineage. Activated iNKT cells can exert direct cytolysis and can rapidly release a variety of immune-polarizing cytokines, thereby regulating the ensuing adaptive immune response. iNKT cells recognize lipids in the context of the antigen-presenting molecule CD1d. Intriguingly, CD1d-restricted iNKT cells appear to play a critical role in anti-viral defense: increased susceptibility to disseminated viral infections is observed both in patients with iNKT cell deficiency as well as in CD1d- and iNKT cell-deficient mice. Moreover, viruses have recently been found to use sophisticated strategies to withstand iNKT cell-mediated elimination. This review focuses on CD1d-restricted lipid presentation and the strategies viruses deploy to subvert this pathway.


Assuntos
Antígenos CD1d/imunologia , Lipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/virologia , Interferência Viral , Animais , Apresentação de Antígeno , HIV/imunologia , HIV/patogenicidade , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/imunologia , Herpesvirus Humano 8/patogenicidade , Humanos , Evasão da Resposta Imune , Imunidade Inata , Camundongos , Células T Matadoras Naturais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...