Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8215, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859260

RESUMO

Environmental contexts can inform animals of potential threats, though it is currently unknown how context biases the selection of defensive behavior. Here we investigated context-dependent flight responses with a Pavlovian serial-compound stimulus (SCS) paradigm that evokes freeze-to-flight transitions. Similar to previous work in mice, we show that male and female rats display context-dependent flight-like behavior in the SCS paradigm. Flight behavior was dependent on contextual fear insofar as it was only evoked in a shock-associated context and was reduced in the conditioning context after context extinction. Flight behavior was only expressed to white noise regardless of temporal order within the compound. Nonetheless, rats that received unpaired SCS trials did not show flight-like behavior to the SCS, indicating it is associative. Finally, we show that pharmacological inactivation of two brain regions critical to the expression of contextual fear, the central nucleus of the amygdala (CeA) and bed nucleus of the stria terminalis (BNST), attenuates both contextual fear and flight responses. All of these effects were similar in male and female rats. This work demonstrates that contextual fear can summate with cued and innate fear to drive a high fear state and transition from post-encounter to circa-strike defensive modes.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Condicionamento Clássico , Reação de Fuga , Estimulação Acústica , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Medo , Feminino , Masculino , Muscimol/farmacologia , Ratos , Ratos Long-Evans , Núcleos Septais/efeitos dos fármacos
2.
Nat Neurosci ; 24(5): 677-684, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33795883

RESUMO

Reconsolidation may be a viable therapeutic target to inhibit pathological fear memories. In the clinic, incidental or imaginal reminders are used for safe retrieval of traumatic memories of experiences that occurred elsewhere. However, it is unknown whether indirectly retrieved traumatic memories are sensitive to disruption. Here we used a backward (BW) conditioning procedure to indirectly retrieve and manipulate a hippocampus (HPC)-dependent contextual fear engram in male rats. We show that conditioned freezing to a BW conditioned stimulus (CS) is mediated by fear to the conditioning context, activates HPC ensembles that can be covertly captured and chemogenetically activated to drive fear, and is impaired by post-retrieval protein synthesis inhibition. These results reveal that indirectly retrieved contextual fear memories reactivate HPC ensembles and undergo protein synthesis-dependent reconsolidation. Clinical interventions that rely on indirect retrieval of traumatic memories, such as imaginal exposure, may open a window for editing or erasure of neural representations that drive pathological fear.


Assuntos
Condicionamento Psicológico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Animais , Masculino , Consolidação da Memória/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
3.
Neurobiol Learn Mem ; 174: 107281, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721480

RESUMO

Considerable work demonstrates that Pavlovian fear conditioning depends on N-methyl-D-aspartate (NMDA) receptor-dependent plasticity within the amygdala. In addition, the bed nucleus of the stria terminalis (BNST) has also been implicated in fear conditioning, particularly in the expression of fear to poor predictors of threat. We recently found that the expression of backward (BW) fear conditioning, in which an auditory conditioned stimulus (CS) follows a footshock unconditioned stimulus (US), requires the BNST; the expression of forward (FW) fear conditioning was not disrupted by BNST inactivation. However, whether NMDA receptors within the BNST contribute to the acquisition of fear conditioning is unknown. Moreover, the central nucleus of the amygdala (CeA), which has extensive connections with the BNST, is critically involved in FW conditioning, however whether it participates in BW conditioning has not been explored. Here we test the specific hypothesis that the CeA and the BNST mediate the acquisition of FW and BW fear conditioning, respectively. Adult female and male rats were randomly assigned to receive bilateral infusions of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovalerate (APV), into the CeA or BNST prior to FW or BW fear conditioning. We found that intra-CeA APV impaired the acquisition of both FW and BW conditioning, whereas intra-BNST APV produced selective deficits in BW conditioning. Moreover, APV in the BNST significantly reduced contextual freezing, whereas CeA NMDA receptor antagonism impeded early but not long-lasting contextual fear. Collectively, these data reveal that CeA and BNST NMDA receptors have unique roles in fear conditioning.


Assuntos
Núcleo Central da Amígdala/fisiologia , Medo/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Núcleos Septais/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico/fisiologia , Feminino , Masculino , Ratos Long-Evans
4.
Elife ; 82019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946011

RESUMO

The bed nucleus of the stria terminalis (BNST) has been implicated in conditioned fear and anxiety, but the specific factors that engage the BNST in defensive behaviors are unclear. Here we examined whether the BNST mediates freezing to conditioned stimuli (CSs) that poorly predict the onset of aversive unconditioned stimuli (USs) in rats. Reversible inactivation of the BNST selectively reduced freezing to CSs that poorly signaled US onset (e.g., a backward CS that followed the US), but did not eliminate freezing to forward CSs even when they predicted USs of variable intensity. Additionally, backward (but not forward) CSs selectively increased Fos in the ventral BNST and in BNST-projecting neurons in the infralimbic region of the medial prefrontal cortex (mPFC), but not in the hippocampus or amygdala. These data reveal that BNST circuits regulate fear to unpredictable threats, which may be critical to the etiology and expression of anxiety.


Assuntos
Reação de Fuga , Medo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Núcleos Septais/fisiologia , Animais , Ansiedade , Ratos
5.
Proc Natl Acad Sci U S A ; 116(17): 8570-8575, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30971490

RESUMO

The medial prefrontal cortex (mPFC) plays an essential role in regulating emotion, including inhibiting fear when danger has passed. The extinction of fear, however, is labile and a number of factors, including stress, cause extinguished fear to relapse. Here we show that fear relapse in rats limits single-unit activity among infralimbic (IL) neurons, which are critical for inhibiting fear responses, and facilitates activity in prelimbic (PL) neurons involved in fear expression. Pharmacogenetic activation of noradrenergic neurons in the locus coeruleus mimics this shift in reciprocal IL-PL spike firing, increases the expression of conditioned freezing behavior, and causes relapse of extinguished fear. Noradrenergic modulation of mPFC firing represents a mechanism for relapse and a potential target for therapeutic interventions to reduce pathological fear.


Assuntos
Medo/fisiologia , Locus Cerúleo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Eletrodos Implantados , Extinção Psicológica/fisiologia , Norepinefrina , Ratos
6.
Curr Opin Neurobiol ; 54: 54-59, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30216780

RESUMO

Over the years Pavlovian fear conditioning has proved to be a powerful model to investigate the neural underpinnings of aversive associative memory formation. Although it is well appreciated that plasticity occurring at excitatory synapses within the basolateral complex of the amygdala (BLA) plays a critical role in associative memory formation, recent evidence suggests that plasticity within the amygdala is more distributed than previously appreciated. In particular, studies demonstrate that plasticity in the central nucleus (CeA) is critical for the acquisition of conditioned fear. In addition, a variety of interneuron populations within the amygdala, defined by unique neurochemical markers, contribute to distinct aspects of stimulus processing and memory formation during fear conditioning. Here, we will review and summarize recent advances in our understanding of amygdala networks and how unique players within this network contribute to synaptic plasticity associated with the acquisition of conditioned fear.


Assuntos
Tonsila do Cerebelo/citologia , Medo , Interneurônios/fisiologia , Sinapses/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico , Extinção Psicológica , Humanos , Memória , Plasticidade Neuronal/fisiologia
7.
J Neurosci ; 38(46): 9925-9933, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30282726

RESUMO

The nucleus reuniens (RE) is a ventral midline thalamic nucleus that interconnects the medial prefrontal cortex (mPFC) and hippocampus (HPC). Considerable data indicate that HPC-mPFC circuits are involved in contextual and spatial memory; however, it is not clear whether the RE mediates the acquisition or retrieval of these memories. To examine this question, we inactivated the RE with muscimol before either the acquisition or retrieval of pavlovian fear conditioning in rats; freezing served as the index of fear. We found that RE inactivation before conditioning impaired the acquisition of contextual freezing, whereas inactivation of the RE before retrieval testing increased the generalization of freezing to a novel context; inactivation of the RE did not affect either the acquisition or expression of auditory fear conditioning. Interestingly, contextual conditioning impairments were absent when retrieval testing was also conducted after RE inactivation. Contextual memories acquired under RE inactivation were hippocampal independent, insofar as contextual freezing in rats conditioned under RE inactivation was insensitive to intrahippocampal infusions of the NMDA receptor antagonist aminophosphonovalerate. Together, these data reveal that the RE supports hippocampal-dependent encoding of precise contextual memories that allow discrimination of dangerous contexts from safe contexts. When the RE is inactive, however, alternate neural systems acquire an impoverished contextual memory that is expressed only when the RE is off-line.SIGNIFICANCE STATEMENT The midline thalamic nucleus reuniens (RE) coordinates communication between the hippocampus and medial prefrontal cortex, brain areas that are critical for contextual and spatial memory. Here we show that temporary pharmacological inactivation of RE impairs the acquisition and precision of contextual fear memories after pavlovian fear conditioning in rats. However, inactivating the RE before retrieval testing restored contextual memory in rats conditioned after RE inactivation. Critically, we show that imprecise contextual memories acquired under RE inactivation are learned independently of the hippocampus. These data reveal that the RE is required for hippocampal-dependent encoding of precise contextual memories to support the discrimination of safe and dangerous contexts.


Assuntos
Medo/fisiologia , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Rede Nervosa/fisiologia , Memória Espacial/fisiologia , Estimulação Acústica/efeitos adversos , Animais , Medo/psicologia , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans
8.
Neuroscience ; 352: 216-225, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28377177

RESUMO

The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder).


Assuntos
Corpo Estriado/metabolismo , Extinção Psicológica/fisiologia , Hábitos , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Antimetabólitos/farmacologia , Corpo Estriado/efeitos dos fármacos , Ciclosserina/farmacologia , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo , Valina/análogos & derivados , Valina/farmacologia
9.
Neurobiol Learn Mem ; 136: 54-62, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27663194

RESUMO

Previous research has indicated a role for the dorsolateral striatum (DLS) in acquisition and retrieval of habit memory. However, the neurobiological mechanisms guiding extinction of habit memory have not been extensively investigated. The present study examined whether the dorsolateral striatum (DLS) is involved in extinction of habit memory in a food-rewarded response learning version of the plus-maze in adult male Long-Evans rats (experiment 1). In addition, to determine whether the role of this brain region in extinction is selective to habit memory, we also examined whether the DLS is required for extinction of hippocampus-dependent spatial memory in a place learning version of the plus-maze (experiment 2). Following acquisition in either task, rats received two days of extinction training, in which the food reward was removed from the maze. The number of perseverative trials (a trial in which the rat made the same previously reinforced body-turn) and latency to reach the previously correct food well were used as measures of extinction. Animals were given immediate post-training intra-DLS administration of the sodium channel blocker bupivacaine or vehicle to determine the effect of DLS inactivation on consolidation of extinction memory in each task. In the response learning task, post-training DLS inactivation impaired consolidation of extinction memory. Injections of bupivacaine delayed 2 h post-training did not affect extinction, indicating a time-dependent effect of neural inactivation on consolidation of extinction memory in this task. In contrast, post-training DLS inactivation did not impair, but instead slightly enhanced, extinction memory in the place learning task. The present findings indicate a critical role for the DLS in extinction of habit memory in the response learning task, and may be relevant to understanding the neural mechanisms through which maladaptive habits in human psychopathologies (e.g. drug addiction) may be suppressed.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/fisiologia , Extinção Psicológica/fisiologia , Hábitos , Memória/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Bupivacaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Ratos Long-Evans , Recompensa , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...