Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 228(8): 2007-2015, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658857

RESUMO

The advent of diffusion tensor imaging (DTI) in addition to cadaveric brain dissection allowed a comprehensive description of an adult human brain. Nonetheless, the knowledge of the development of the internal architecture of the brain is mostly incomplete. Our study aimed to provide a description of the anatomical variations of the major associational bundles, among fetal and early post-natal periods. Seventeen formalin-fixed fetal human brains were enrolled for sulci analysis, and 13 specimens were dissected under the operating microscope, using Klingler's technique. Although fronto-temporal connections could be observed in all stages of development, a distinction between the uncinate fascicle, and the inferior fronto-occipital fascicle was clear starting from the early preterm period (25-35 post-conceptional week). Similarly, we were consistently able to isolate the periatrial white matter that forms the sagittal stratum (SS), with no clear distinction among SS layers. Arcuate fascicle and superior longitudinal fascicle were isolated only at the late stage of development without a reliable description of their entire course. The results of our study demonstrated that, although white matter is mostly unmyelinated among fetal human brains, cadaveric dissection can be performed with consistent results. Furthermore, the stepwise development of the associational fiber tracts strengthens the hypothesis that anatomy and function run in parallel, and higher is the cognitive functions subserved by an anatomical structure, later the development of the fascicle. Further histological-anatomical-DWI investigations are required to appraise and explore this topic.


Assuntos
Tecido Nervoso , Substância Branca , Adulto , Recém-Nascido , Humanos , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Cadáver
2.
Cereb Cortex ; 33(7): 4173-4187, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36089833

RESUMO

The epileptic brain is the result of a sequence of events transforming normal neuronal populations into hyperexcitable networks supporting recurrent seizure generation. These modifications are known to induce fundamental alterations of circuit function and, ultimately, of behavior. However, how hyperexcitability affects information processing in cortical sensory circuits is not yet fully understood. Here, we investigated interlaminar alterations in sensory processing of the visual cortex in a mouse model of focal epilepsy. We found three main circuit dynamics alterations in epileptic mice: (i) a spreading of visual contrast-driven gamma modulation across layers, (ii) an increase in firing rate that is layer-unspecific for excitatory units and localized in infragranular layers for inhibitory neurons, and (iii) a strong and contrast-dependent locking of firing units to network activity. Altogether, our data show that epileptic circuits display a functional disruption of layer-specific organization of visual sensory processing, which could account for visual dysfunction observed in epileptic subjects. Understanding these mechanisms paves the way to circuital therapeutic interventions for epilepsy.


Assuntos
Epilepsias Parciais , Epilepsia , Neocórtex , Camundongos , Animais , Neurônios/fisiologia , Percepção Visual
3.
J Neurosci Res ; 99(9): 2216-2227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051113

RESUMO

Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Contagem de Células/métodos , Hipocampo/citologia , Hipocampo/patologia , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Sinapses/patologia , Sinapses/fisiologia
4.
Front Cell Neurosci ; 14: 606142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362472

RESUMO

Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.

5.
Toxicon X ; 5: 100019, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140681

RESUMO

Neurological diseases constitute a quarter of global disease burden and are expected to rise worldwide with the ageing of human populations. There is an increasing need to develop new molecular systems which can deliver drugs specifically into neurons, non-dividing cells meant to last a human lifetime. Neuronal drug delivery must rely on agents which can recognise neurons with high specificity and affinity. Here we used a recently introduced 'stapling' system to prepare macromolecules carrying duplicated binding domains from the clostridial family of neurotoxins. We engineered individual parts of clostridial neurotoxins separately and combined them using a strong alpha-helical bundle. We show that combining two identical binding domains of tetanus and botulinum type D neurotoxins, in a sterically defined way by protein stapling, allows enhanced intracellular delivery of molecules into neurons. We also engineered a botulinum neurotoxin type C variant with a duplicated binding domain which increased enzymatic delivery compared to the native type C toxin. We conclude that duplication of the binding parts of tetanus or botulinum neurotoxins will allow production of high avidity agents which could deliver imaging reagents and large therapeutic enzymes into neurons with superior efficiency.

6.
J Neurosci ; 40(13): 2776-2788, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098904

RESUMO

Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. Because loss of function of Ophn1 is related to enhanced activity of Rho-associated protein kinase (ROCK) and protein kinase A (PKA), we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute administration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuroanatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.SIGNIFICANCE STATEMENT In this study we demonstrate enhanced seizure propensity and impairments in hippocampal GABAergic circuitry in Ophn1 mouse model of X-linked intellectual disability (XLID). Importantly, the enhanced susceptibility to seizures, accompanied by an alteration of GABAergic markers were rescued by Rho-associated protein kinase (ROCK)/protein kinase A (PKA) inhibitor fasudil, a drug already tested on humans. Because seizures can significantly impact the quality of life of XLID patients, the present data suggest a potential therapeutic pathway to correct alterations in GABAergic networks and dampen pathological hyperexcitability in adults with XLID.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Neurônios GABAérgicos/efeitos dos fármacos , Proteínas Ativadoras de GTPase/genética , Hipocampo/efeitos dos fármacos , Deficiência Intelectual/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Convulsões/fisiopatologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Convulsões/genética
7.
J Neurosci ; 38(48): 10329-10337, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30315128

RESUMO

Botulinum neurotoxin Type A (BoNT/A) is an effective treatment for several movement disorders, including spasticity and dystonia. BoNT/A acts by cleaving synaptosomal-associated protein of 25 kDa (SNAP-25) at the neuromuscular junction, thus blocking synaptic transmission and weakening overactive muscles. However, not all the therapeutic benefits of the neurotoxin are explained by peripheral neuroparalysis, suggesting an action of BoNT/A on central circuits. Currently, the specific targets of BoNT/A central activity remain unclear. Here, we show that catalytically active BoNT/A is transported to the facial nucleus (FN) after injection into the nasolabial musculature of rats and mice. BoNT/A-mediated cleavage of SNAP-25 in the FN is prevented by intracerebroventricular delivery of antitoxin antibodies, demonstrating that BoNT/A physically leaves the motoneurons to enter second-order neurons. Analysis of intoxicated terminals within the FN shows that BoNT/A is transcytosed preferentially into cholinergic synapses. The cholinergic boutons containing cleaved SNAP-25 are associated with a larger size, suggesting impaired neuroexocytosis. Together, the present findings indicate a previously unrecognized source of reduced motoneuron drive after BoNT/A via blockade of central, excitatory cholinergic inputs. These data highlight the ability of BoNT/A to selectively target and modulate specific central circuits, with consequent impact on its therapeutic effectiveness in movement disorders.SIGNIFICANCE STATEMENT Botulinum neurotoxins are among the most potent toxins known. Despite this, their specific and reversible action prompted their use in clinical practice to treat several neuromuscular pathologies (dystonia, spasticity, muscle spasms) characterized by hyperexcitability of peripheral nerve terminals or even in nonpathological applications (i.e., cosmetic use). Substantial experimental and clinical evidence indicates that not all botulinum neurotoxin Type A (BoNT/A) effects can be explained solely by the local action (i.e., silencing of the neuromuscular junction). In particular, there are cases in which the clinical benefit exceeds the duration of peripheral neurotransmission blockade. In this study, we demonstrate that BoNT/A is transported to facial motoneurons, released, and internalized preferentially into cholinergic terminals impinging onto the motoneurons. Our data demonstrate a direct central action of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Neurônios Colinérgicos/fisiologia , Neurotoxinas/administração & dosagem , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Long-Evans , Sinapses/efeitos dos fármacos
8.
Front Behav Neurosci ; 12: 109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896093

RESUMO

Objective: Amblyopia is a neurodevelopmental disorder characterized by visual acuity and contrast sensitivity loss, refractory to pharmacological and optical treatments in adulthood. In animals, the corpus callosum (CC) contributes to suppression of visual responses of the amblyopic eye. To investigate the role of interhemispheric pathways in amblyopic patients, we studied the response of the visual cortex to transcranial Direct Current Stimulation (tDCS) applied over the primary visual area (V1) contralateral to the "lazy eye." Methods: Visual acuity (logMAR) was assessed before (T0), immediately after (T1) and 60' following the application of cathodal tDCS (2.0 mA, 20') in 12 amblyopic patients. At each time point, Visual Evoked Potentials (VEPs) triggered by grating stimuli of different contrasts (K90%, K20%) were recorded in both hemispheres and compared to those obtained in healthy volunteers. Results: Cathodal tDCS improved visual acuity respect to baseline (p < 0.0001), whereas sham polarization had no significant effect. At T1, tDCS induced an inhibitory effect on VEPs amplitudes at all contrasts in the targeted side and a facilitation of responses in the hemisphere ipsilateral to the amblyopic eye; compared with controls, the facilitation persisted at T2 for high contrasts (K90%; Holm-Sidak post hoc method, p < 0.001), while the stimulated hemisphere recovered more quickly from inhibition (Holm-Sidak post hoc method, p < 0.001). Conclusions: tDCS is a promising treatment for amblyopia in adults. The rapid recovery of excitability and the concurrent transcallosal disinhibition following perturbation of cortical activity may support a critical role of interhemispheric balance in the pathophysiology of amblyopia.

9.
Toxins (Basel) ; 10(5)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693600

RESUMO

Botulinum neurotoxins are metalloproteases that specifically cleave N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in synaptic terminals, resulting in a potent inhibition of vesicle fusion and transmitter release. The family comprises different serotypes (BoNT/A to BoNT/G). The natural target of these toxins is represented by the neuromuscular junction, where BoNTs block acetylcholine release. In this review, we describe the actions of botulinum toxins after direct delivery to the central nervous system (CNS), where BoNTs block exocytosis of several transmitters, with near-complete silencing of neural networks. The use of clostridial neurotoxins in the CNS has allowed us to investigate specifically the role of synaptic activity in different physiological and pathological processes. The silencing properties of BoNTs can be exploited for therapeutic purposes, for example to counteract pathological hyperactivity and seizures in epileptogenic brain foci, or to investigate the role of activity in degenerative diseases like prion disease. Altogether, clostridial neurotoxins and their derivatives hold promise as powerful tools for both the basic understanding of brain function and the dissection and treatment of activity-dependent pathogenic pathways.


Assuntos
Toxinas Botulínicas/administração & dosagem , Encéfalo/efeitos dos fármacos , Neurotoxinas/administração & dosagem , Animais , Encéfalo/fisiologia , Encefalopatias/tratamento farmacológico , Encefalopatias/fisiopatologia , Humanos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
10.
Toxicon ; 147: 68-72, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111119

RESUMO

Local intramuscular injections of botulinum neurotoxin type A (BoNT/A) are effective in the treatment of focal dystonias, muscle spasms, and spasticity. However, not all clinical effects of BoNT/A may be explained by its action at peripheral nerve terminals. For example, the therapeutic benefit may exceed the duration of the peripheral neuroparalysis induced by the neurotoxin. In cellular and animal models, evidence demonstrates retrograde transport of catalytically active BoNT/A in projection neurons. This process of long-range trafficking is followed by transcytosis and action at second-order synapses. In humans, several physiological changes have been described following intramuscular delivery of BoNT/A. In particular, clinical studies have documented a decrease in Renshaw cell-mediated inhibition (i.e., recurrent inhibition), which may be important therapeutically for normalizing uncoordinated movements and overflow of muscle activity. In this review, we present data obtained in animal and experimental models that support direct central actions of BoNT/A mediated via retrograde axonal trafficking. We also discuss the reorganization of central circuitry induced by BoNT/A in patients, and the potential contribution of these effects to the therapeutic efficacy of the neurotoxin.


Assuntos
Toxinas Botulínicas/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Animais , Humanos
11.
Front Syst Neurosci ; 10: 86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895559

RESUMO

Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway.

12.
Clin Neurophysiol ; 127(10): 3353-61, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27407061

RESUMO

OBJECTIVE: To investigate functional changes underlying photosensitivity, we studied the response of the visual cortex to low-frequency, inhibitory repetitive transcranial magnetic stimulation (rTMS) in drug-free patients with photosensitive seizures and healthy volunteers. METHODS: Visual evoked potentials (VEPs) triggered by grating stimuli of different contrasts were recorded in both hemispheres before and after transient functional inactivation of the occipital cortex of one side via low-frequency rTMS (0.5Hz for 20'). VEPs were recorded before (T0), immediately after (T1) and 45' following the completion of rTMS (T2). RESULTS: Baseline amplitudes of the early VEP components (N1 and P1) were enhanced in photosensitive patients. At T1, rTMS produced an inhibitory effect on VEPs amplitudes at all contrasts in the targeted side and a concurrent facilitation of responses in the contralateral hemisphere. Compared with PSE subjects, VEP amplitudes remained persistently dampened in the stimulated hemisphere of controls (Holm-Sidak post-hoc method, p<0.05). In the contralateral hemisphere, we found a clear enhancement of VEP amplitude in photosensitive subjects but not controls at T2 (Holm-Sidak test, p<0.001). CONCLUSIONS: Visual responses recovered more quickly in the stimulated hemisphere, and disinhibition persisted in the contralateral side of photosensitive subjects. SIGNIFICANCE: The rapid recovery of excitability and the persistent transcallosal disinhibition following perturbation of cortical activity may play a role in the pathophysiology of photosensitive epilepsy.


Assuntos
Epilepsia Reflexa/fisiopatologia , Potenciais Evocados Visuais , Estimulação Magnética Transcraniana , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Córtex Visual/fisiopatologia
13.
Brain Struct Funct ; 221(6): 2919-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26163822

RESUMO

Epilepsy is characterized by impaired circuit function and a propensity for spontaneous seizures, but how plastic rearrangements within the epileptic focus trigger cortical dysfunction and hyperexcitability is only partly understood. Here we have examined alterations in sensory processing and the underlying biochemical and neuroanatomical changes in tetanus neurotoxin (TeNT)-induced focal epilepsy in mouse visual cortex. We documented persistent epileptiform electrographic discharges and upregulation of GABAergic markers at the completion of TeNT effects. We also found a significant remodeling of the dendritic arbors of pyramidal neurons, with increased dendritic length and branching, and overall reduction in spine density but significant preservation of mushroom, mature spines. Functionally, spontaneous neuronal discharge was increased, visual responses were less reliable, and electrophysiological and behavioural visual acuity was consistently impaired in TeNT-injected mice. These data demonstrate robust, long-term remodeling of both inhibitory and excitatory circuitry associated with specific disturbances of network function in neocortical epilepsy.


Assuntos
Dendritos/patologia , Epilepsias Parciais/patologia , Epilepsias Parciais/fisiopatologia , Potenciais Evocados Visuais , Plasticidade Neuronal , Córtex Visual/patologia , Córtex Visual/fisiopatologia , Animais , Dendritos/fisiologia , Epilepsias Parciais/induzido quimicamente , Epilepsias Parciais/metabolismo , Neurônios GABAérgicos/metabolismo , Metaloendopeptidases , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Células Piramidais/patologia , Células Piramidais/fisiologia , Toxina Tetânica , Regulação para Cima , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Acuidade Visual , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Eur J Neurosci ; 40(1): 2283-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24689940

RESUMO

Binocularity is a key property of primary visual cortex (V1) neurons that is widely used to study synaptic integration in the brain and plastic mechanisms following an altered visual experience. However, it is not clear how the inputs from the two eyes converge onto binocular neurons, and how their interaction is modified by an unbalanced visual drive. Here, using visual evoked potentials recorded in the juvenile rat V1, we report evidence for a suppressive mechanism by which contralateral eye activity inhibits responses from the ipsilateral eye. Accordingly, we found a lack of additivity of the responses evoked independently by the two eyes in the V1, and acute silencing of the contralateral eye resulted in the enhancement of ipsilateral eye responses in cortical neurons. We reverted the relative cortical strength of the two eyes by suturing the contralateral eye shut [monocular deprivation (MD)]. After 7 days of MD, there was a loss of interocular suppression mediated by the contralateral, deprived eye, and weak inputs from the closed eye were functionally inhibited by interhemispheric callosal pathways. We conclude that interocular suppressive mechanisms play a crucial role in shaping normal binocularity in visual cortical neurons, and a switch from interocular to interhemispheric suppression represents a key step in the ocular dominance changes induced by MD. These data have important implications for a deeper understanding of the key mechanisms that underlie activity-dependent rearrangements of cortical circuits following alteration of sensory experience.


Assuntos
Lateralidade Funcional/fisiologia , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Animais , Corpo Caloso/fisiologia , Potenciais Evocados Visuais , Camundongos Endogâmicos C57BL , Microeletrodos , Neurônios/fisiologia , Estimulação Luminosa , Ratos Long-Evans , Fatores de Tempo , Visão Binocular/fisiologia
15.
Rev Neurosci ; 25(1): 113-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24127537

RESUMO

Visual cortical areas in the two sides of the brain are interconnected by interhemispheric fibers passing through the splenium of the corpus callosum. In this review, we summarize data concerning the anatomical features of visual callosal connections, their roles in basic visual processing, and how their alterations contribute to visual deficits in different human neuropathologies. Splenial fibers represent a population of excitatory axons with varying diameters, which interconnect cortical columns with similar functional properties (i.e., same orientation selectivity) in the two hemispheres. Their branches activate simultaneously distinct iso-oriented columns in the contralateral hemisphere, thus mediating forms of stimulus-dependent interhemispheric synchronization. Callosal branches also make synapses onto GABAergic cells, resulting in an inhibitory modulation of visual processing that involves both iso-oriented and cross-oriented cortical networks. Interhemispheric inhibition appears to predominate at short latencies following callosal activation, whereas excitation becomes more robust with increasing delays. These callosal effects are dynamically adapted to the incoming visual activity, so that stimuli providing only weak afferent input are facilitated by callosal pathways, whereas strong visual input via the retinogeniculate pathway tends to be offset by transcallosal inhibition. We also review data highlighting the contribution of callosal input activity to maturation of visual function during early 'critical periods' in brain development and describe how interhemispheric transfer of visual information is rerouted in cases of callosal agenesis or following splenial damage. Finally, we provide an overview of alterations in splenium anatomy or function that may be at the basis of visual defects in several pathologic conditions.


Assuntos
Corpo Caloso/fisiologia , Lateralidade Funcional , Doenças do Sistema Nervoso/patologia , Vias Visuais/fisiologia , Humanos , Córtex Visual/fisiologia
16.
Arch Ital Biol ; 152(4): 179-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25987180

RESUMO

Functional plasticity in rodent visual cortex has been intensively studied since the pioneering experiments of Hubel and Wiesel in the sixties. Nevertheless, the structural modifications underlying this phenomenon remain elusive. In this article, we will review recent data focused on the dynamic of excitatory and inhibitory synapses and their structural changes linked to functional modifications. We also review novel evidence on structural remodeling that promote functional plasticity and on the role of cytoskeleton modifications in experience-dependent plasticity of rodent visual cortex.

17.
Bioconjug Chem ; 24(10): 1750-9, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24011174

RESUMO

Clostridial neurotoxins reversibly block neuronal communication for weeks and months. While these proteolytic neurotoxins hold great promise for clinical applications and the investigation of brain function, their paralytic activity at neuromuscular junctions is a stumbling block. To redirect the clostridial activity to neuronal populations other than motor neurons, we used a new self-assembling method to combine the botulinum type A protease with the tetanus binding domain, which natively targets central neurons. The two parts were produced separately and then assembled in a site-specific way using a newly introduced 'protein stapling' technology. Atomic force microscopy imaging revealed dumbbell shaped particles which measure ∼23 nm. The stapled chimera inhibited mechanical hypersensitivity in a rat model of inflammatory pain without causing either flaccid or spastic paralysis. Moreover, the synthetic clostridial molecule was able to block neuronal activity in a defined area of visual cortex. Overall, we provide the first evidence that the protein stapling technology allows assembly of distinct proteins yielding new biomedical properties.


Assuntos
Toxinas Botulínicas Tipo A/metabolismo , Encéfalo/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Toxina Tetânica/metabolismo , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Encéfalo/fisiologia , Células Cultivadas , Clostridium botulinum/metabolismo , Clostridium tetani/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Toxina Tetânica/administração & dosagem
18.
J Neurosci ; 33(28): 11715-23, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843538

RESUMO

Early life experiences can affect brain development, contributing to shape interindividual differences in stress vulnerability and anxiety-like behavior. In rodents, high levels of maternal care have long-lasting positive effects on the behavior of the offspring and stress response; post-weaning rearing in an enriched environment (EE) or massage counteract the negative effects of maternal separation or prenatal stressors. We recently found that insulin-like growth factor 1 (IGF-1) is a key mediator of early EE or massage on brain development. Whether early enrichment of experience can induce long-lasting effects on anxiety-like behavior and whether IGF-1 is involved in these effects is not known. We assessed anxiety-like behavior by means of the elevated plus maze in control adult rats and in adult rats subjected to early EE or to massage. We found that both EE and massage reduced adult anxiety-like behavior. Early IGF-1 systemic injections in rat pups reared in standard condition mimic the effects of EE and massage, reducing anxiety-like behavior in the adult; blocking early IGF-1 action in massaged and EE animals prevents massage and EE effects. In EE and IGF-1-treated animals, we assessed the hippocampal expression of glucocorticoid receptors (GRs) at postnatal day 12 (P12) and P60, finding a significantly higher GR expression at P60 for both treatments. These results suggest that IGF-1 could be involved in mediating the long-lasting effects of early life experiences on vulnerability/resilience to stress in adults.


Assuntos
Ansiedade/prevenção & controle , Ansiedade/psicologia , Meio Ambiente , Fator de Crescimento Insulin-Like I/fisiologia , Acontecimentos que Mudam a Vida , Massagem/psicologia , Fatores Etários , Animais , Animais Recém-Nascidos , Feminino , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Masculino , Massagem/métodos , Ratos , Ratos Long-Evans , Estresse Psicológico/prevenção & controle , Estresse Psicológico/psicologia
19.
Prion ; 7(2): 147-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23357830

RESUMO

The degeneration of pre-synaptic boutons in the stratum radiatum of the dorsal hippocampus is one of earliest components of neurodegeneration in several models of murine prion disease. We recently showed that blockade of synaptic transmission by infusion of botulinum neurotoxin A (BoNT/A) into the hippocampus several weeks prior to the onset of degeneration, had no detectable impact on the extent of the synaptic degeneration. ( 1) We elaborate here on the rationale for these experiments and highlight why we believe that this negative result is interesting and important. We also discuss new observations that might provide insights into the molecular events that underlie synapse degeneration.


Assuntos
Doenças Priônicas/fisiopatologia , Sinapses/fisiologia , Animais , Modelos Animais de Doenças , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica/fisiologia
20.
PLoS One ; 7(7): e41182, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815961

RESUMO

In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naïve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Doenças Priônicas/metabolismo , Deficiências na Proteostase/metabolismo , Sinapses/fisiologia , Animais , Inativação Gênica , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microscopia Eletrônica/métodos , Modelos Neurológicos , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...