Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 9: e1655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077599

RESUMO

There is a high failure rate and low academic performance observed in programming courses. To address these issues, it is crucial to predict student performance at an early stage. This allows teachers to provide timely support and interventions to help students achieve their learning objectives. The prediction of student performance has gained significant attention, with researchers focusing on machine learning features and algorithms to improve predictions. This article proposes a model for predicting student performance in a 16-week CS1 programming course, specifically in weeks 3, 5, and 7. The model utilizes three key factors: grades, delivery time, and the number of attempts made by students in programming labs and an exam. Eight classification algorithms were employed to train and evaluate the model, with performance assessed using metrics such as accuracy, recall, F1 score, and AUC. In week 3, the gradient boosting classifier (GBC) achieved the best results with an F1 score of 86%, followed closely by the random forest classifier (RFC) with 83%. These findings demonstrate the potential of the proposed model in accurately predicting student performance.

2.
Sensors (Basel) ; 21(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696106

RESUMO

The analysis of data from sensors in structures subjected to extreme conditions such as the ones used in smelting processes is a great decision tool that allows knowing the behavior of the structure under different operational conditions. In this industry, the furnaces and the different elements are fully instrumented, including sensors to measure variables such as temperature, pressure, level, flow, power, electrode positions, among others. From the point of view of engineering and data analytics, this quantity of data presents an opportunity to understand the operation of the system under normal conditions or to explore new ways of operation by using information from models provided by using deep learning approaches. Although some approaches have been developed with application to this industry, it is still an open research area. As a contribution, this paper presents an applied deep learning temperature prediction model for a 75 MW electric arc furnace, which is used for ferronickel production. In general, the methodology proposed considers two steps: first, a data cleaning process to increase the quality of the data, eliminating both redundant information as well as atypical and unusual data, and second, a multivariate time series deep learning model to predict the temperatures in the furnace lining. The developed deep learning model is a sequential one based on GRU (gated recurrent unit) layer plus a dense layer. The GRU + Dense model achieved an average root mean square error (RMSE) of 1.19 °C in the test set of 16 different thermocouples radially distributed on the furnace.

3.
Front Psychol ; 10: 2843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920872

RESUMO

Gamification methods adapt the mechanics of games to educational environments for the improvement of the teaching-learning process. Serious games play an important role as tools for gamification, in particular in the context of software engineering courses because of the idiosyncratic nature of the topic. However, the studies on the improvement of student performance resulting from the use of gamification and serious games in courses with different contexts are not conclusive. More empirical research is thus needed to obtain reliable results on the effectiveness, benefits and drawbacks. The overall objective of this work is to study the benefits generated by serious games in the teaching-learning process of Computer Engineering degrees, analyzing the impact on the motivation and student satisfaction, as well as on the learning outcomes and results finally achieved. To this end, an intervention is proposed in the subject of Computer Architecture based on two components covering theoretical and practical sessions. In the theoretical sessions, a serious game experience using Kahoot has been introduced, complementing the master classes and class exercises. For the practical sessions, the development of projects with groups of students has been proposed, whose results in terms of computer performance can be compared through a competition (hackathon). Evaluation of the serious game-based intervention has been approached in terms of student satisfaction and motivation, as well as improved academic performance. In order to assess student satisfaction, surveys have been used to assess the effect on student motivation and satisfaction. For the evaluation of academic performance, a comparative analysis between an experimental and a control group has been carried out, noting a slight increase in the experimental group students' marks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...