Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 179: 92-100, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32345455

RESUMO

Specimens of the Crotalus genus represent a potential snakebite problem in Mexico, and despite the great number of species of Crotalus present in this country, only a few of them are relevant from a medical point of view. Crotalus envenomed patients can present a range of signs and symptoms, depending on the species involved, and their treatment is indistinctly with either of the anti-viperid antivenoms available in the Mexican Public Health System. One of these antivenoms is produced by immunization of horses with a mixture of only two venoms: Crotalus basiliscus and Bothrops asper venoms. In light of the high variability found in Crotalus species venom composition, it is important to demonstrate the cross-neutralization of this antivenom against other Crotalus species. Therefore, in this work the toxic variability of eight medically important Crotalus venoms from Mexico and its neutralization by the Crotalus basiliscus/Bothrops asper antivenom were assessed. The present study evidenced the variability of toxic and enzymatic activities among the following Crotalus venoms: (1) Crotalus atrox, (2) Crotalus basiliscus, (3) Crotalus culminatus, (4) Crotalus simus, (5) Crotalus tzabcan, (6) Crotalus scutulatus salvini, (7) Crotalus scutulatus scutulatus-A, and (8) Crotalus scutulatus scutulatus-B. All venoms studied possess lethal and hemorrhagic activity on a murine model, although there are important variations among the species; in contrast, the PLA2 activity was similar for all venoms. Interestingly, only C. simus venom exhibited coagulant activity on human plasma under 100 µg. The antivenom neutralized the lethality and all the other assessed activities for all venoms tested. However, the dose required varied depending on the venom and the evaluated activity. Our preclinical data support the recommendation of using this antivenom to clinically manage Crotalus snakebites produced by the species assessed in this study. Nonetheless, only clinical trials could categorically validate these results.


Assuntos
Antivenenos , Venenos de Crotalídeos/toxicidade , Crotalus , Animais , Bothrops , Venenos de Crotalídeos/química , Hemorragia , Cavalos , Humanos , México , Testes de Neutralização , Mordeduras de Serpentes
2.
J Proteomics ; 158: 62-72, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28238904

RESUMO

The venom of the Mexican west-coast rattlesnake (Crotalus basiliscus) was characterized for its protein composition, toxicological profile and immunogenic properties. This venom is composed of 68% Zn2+-dependent metalloproteinases (SVMPs), 14% phospholipases A2 (PLA2s), 11% serine proteinases, 4% SVMPs-inhibitor tripeptides (SVMP-ITs), 2% bradykinin-potentiating peptides (BPPs), 0.6% cysteine-rich secretory proteins (CRISPs), and 0.2% l-amino acid oxidases (LAAOs). SVMPs present in the venom are responsible for azocasein hydrolysis and hemorrhagic activity, but their contribution to the lethal activity of the venom in mice is masked by the neurotoxic activity of PLA2s, which in addition are also responsible for myotoxic activity. Despite its relatively high content of serine proteinases, the venom of C. basiliscus did not exert in vitro coagulant or in vivo defibrinogenating activities. The ability of antivenoms raised against the venoms of C. basiliscus and C. simus (from Costa Rica) to neutralize homologous and heterologous venoms revealed antigenic similarities between toxins of both venoms. Preclinical evaluation of an antivenom produced by using the venom of C. basiliscus as immunogen demonstrated that it is able to neutralize not only the most relevant toxic activities of C. basiliscus venom, but also those exerted by Costa Rican C. simus venom, including coagulant and defibrinogenating activities. BIOLOGICAL SIGNIFICANCE: The Central American rattlesnake (Crotalus simus) is widely distributed from Mexico to west central Costa Rica, and induces an important number of envenomations in this region. On the other hand, the immunogenic mixture used by Laboratorios de Biológicos y Reactivos de Mexico S.A. (Birmex) to produce the snake antivenom more frequently used in Mexico does not include the venom of C. simus. This immunogenic mixture is composed by the venoms of the Fer-de-lance (Bothrops asper) and the Mexican west-coast rattlesnake (Crotalus basiliscus). We studied the protein composition, toxicological profile and immunogenic properties of the venom of C. basiliscus, and evaluated the ability of the Birmex antivenom to neutralize the venom of C. basiliscus and whether it cross-neutralizes the venom of C. simus from Costa Rica. Using proteomics analysis, in combination with in vitro and mouse tests, we determined that the venom of C. basiliscus is mainly composed by SVMPs, which confer proteolytic and hemorrhagic activities to the venom. Other major components of the venom of C. basiliscus are PLA2s, which are responsible for the myotoxic activity and are the main contributors to the lethal activity. Non-clotting SVSPs correspond to 11% of the venom. Minor components include SVMP-ITs, BPPs, CRISPs and LAAOs, which have not been associated with toxicity. The antibodies induced in horses by the venom of C. basiliscus are able to neutralize not only the most relevant toxic activities of the homologous venom, but also those exerted by Costa Rican C. simus venom, including coagulant and defibrinogenating activities. Our preclinical evaluation suggests that Birmex antivenom can be used to treat envenomations by Costa Rican adult C. simus snakebites, despite this venom not being included in the immunizing mixture.


Assuntos
Crotalus , Crotoxina , Proteômica , Animais , Crotalus/imunologia , Crotalus/metabolismo , Crotoxina/imunologia , Crotoxina/metabolismo , México , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...