Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(1): nwad206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116098
2.
Sci Rep ; 13(1): 20378, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990036

RESUMO

The major evolutionary transition from fish to amphibian included Late Devonian tetrapods that were neither fish nor amphibian. They had thick necks and small limbs with many digits on elongate flexuous bodies more suitable for water than land. Habitats of Devonian tetrapods are of interest in assessing selective pressures on their later evolution for land within three proposed habitats: 1, tidal flats, 2, desert ponds, and 3, woodland streams. Here we assess paleoenvironments of the Late Devonian tetrapod Sinostega from paleosols in Shixiagou Canyon near Zhongning, Ningxia, China. Fossil tetrapods, fish, molluscs, and plants of the Zhongning Formation are associated with different kinds of paleosols, representing early successional vegetation, seasonal wetlands, desert shrublands, and riparian woodlands, and paleoclimates ranging from semiarid moderately seasonal to monsoonal subhumid. The tetrapod Sinostega was found in a paleochannel of a meandering stream below a deep-calcic paleosol supporting well drained progymnosperm woodland in a monsoonal subhumid paleoclimate. This habitat is similar to that of the tetrapods Densignathus, Hynerpeton, and an indeterminate watcheeriid from Pennsylvania, USA. Chinese and Pennsylvanian Late Devonian tetrapods lived in productive woodland streams, choked with woody debris as a refuge from large predators. Habitats of other Devonian tetrapods have yet to be assessed from studies of associated paleosols as evidence for their ancient climate and vegetation.


Assuntos
Evolução Biológica , Fósseis , Animais , Peixes , Anfíbios , Ecossistema
3.
PLoS One ; 18(9): e0291074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756287

RESUMO

The Pilbara craton of northwestern Australia is known for what were, when reported, the oldest known microfossils and paleosols on Earth. Both interpretations are mired in controversy, and neither remain the oldest known. Both the microfossils and the paleosols have been considered hydrothermal artefacts: carbon films of vents and a large hydrothermal cupola, respectively. This study resampled and analyzed putative paleosols within and below the Strelley Pool Formation (3.3 Ga), at four classic locations: Strelley Pool, Steer Ridge, Trendall Ridge, and Streckfuss, and also at newly discovered outcrops near Marble Bar. The same sequence of sedimentary facies and paleosols was newly recognized unconformably above the locality for microfossils in chert of the Apex Basalt (3.5 Ga) near Marble Bar. The fossiliferous Apex chert was not a hydrothermal vein but a thick (15 m) sedimentary interbed within a sequence of pillow basalts, which form an angular unconformity capped by the same pre-Strelley paleosol and Strelley Pool Formation facies found elsewhere in the Pilbara region. Baritic alluvial paleosols within the Strelley Pool Formation include common microfossil spindles (cf. Eopoikilofusa) distinct from marine microfossil communities with septate filaments (Primaevifilum) of cherts in the Apex and Mt Ada Basalts. Phosphorus and iron depletion in paleosols within and below the Strelley Pool Formation are evidence of soil communities of stable landscapes living under an atmosphere of high CO2 (2473 ± 134 ppmv or 8.8 ± 0.5 times preindustrial atmospheric level of 280 ppm) and low O2 (2181 ± 3018 ppmv or 0.01 ± 0.014 times modern).


Assuntos
Artefatos , Carbonato de Cálcio , Humanos , Austrália Ocidental , Fácies , Austrália
4.
PLoS One ; 17(6): e0269638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709144

RESUMO

Recently reported specimens of the enigmatic Ediacaran fossil Dickinsonia from Russia show damage and repair that provides evidence of how they grew, and of their biological affinities. Marginal and terminal areas of wilting deformation are necrotic zones separating regenerated growth, sometimes on two divergent axes, rather than a single axis. Necrotic zones of damage to Dickinsonia are not a thick scar or callus, like a wound or amputation. Nor are they smooth transitions to a regenerated tail or arm. The wilted necrotic zone is most like damage by freezing, salt, or sunburn of leaves and lichens, compatible with evidence of terrestrial habitat from associated frigid and gypsic paleosols. Dickinsonia did not regrow by postembryonic addition of modules from a subterminal or patterned growth zone as in earthworms, myriapods, trilobites, crustaceans, and lizards. Rather Dickinsonia postembryonic regrowth from sublethal damage was from microscopic apical and lateral meristems, as in plants and lichens. Considered as fungal, Dickinsonia, and perhaps others of Class Vendobionta, were more likely Glomeromycota or Mucoromycotina, rather than Ascomycota or Basidiomycota.


Assuntos
Basidiomycota , Glomeromycota , Líquens , Biologia , Fósseis
5.
Astrobiology ; 22(1): 116-123, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020414

RESUMO

Biological regulation of planetary temperature has been explained with the Daisyworld model, in which reflective-cooling white daises balance absorbing-warming black daisies. This article advances the proposition that cooling "daisies" of Daisyworld represent carbon sequestration and consumption by productive soils and ecosystems, such as grasslands expanding into deserts and tropical forests migrating toward the poles. On the other hand, warming "daisies" represent continued CO2 emissions from volcanoes and springs allowed by unproductive frigid and desert ecosystems. Greenhouse spikes of CO2 in deep time from large perturbations, such as flood basalt eruptions and asteroid impacts, did not continue as lethal runaway greenhouses, such as Venus, nor did low CO2 of ice ages decline to a sterile global snowball, such as Mars. These hypotheses are quantified and tested by new global soil maps derived from paleosols of the last extremes of atmospheric CO2: middle Miocene (16 Ma) and last glacial maximum (20 ka), when CO2 levels were 588 ± 72 and 180 ppm, respectively. Observed expansion of productive soils curbed large atmospheric injections of CO2 in deep time and observed expansion of unproductive soils during ice ages of low CO2 was thwarted by continued metamorphic and volcanic degassing. This short-term Soilworld thermostat of biogeographic redistribution of ecosystems supplemented long-term evolution of terrestrial carbon sequestration curbing solar radiation increases over billions of years. Similar agricultural management of ecosystems has potential for short-term carbon sequestration.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , Florestas , Solo
6.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33771878
7.
Sci Rep ; 11(1): 662, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436864

RESUMO

The drying power of air, or vapour pressure deficit (VPD), is an important measurement of potential plant stress and productivity. Estimates of VPD values of the past are integral for understanding the link between rising modern atmospheric carbon dioxide (pCO2) and global water balance. A geological record of VPD is needed for paleoclimate studies of past greenhouse spikes which attempt to constrain future climate, but at present there are few quantitative atmospheric moisture proxies that can be applied to fossil material. Here we show that VPD leaves a permanent record in the slope (S) of least-squares regressions between stable isotope ratios of carbon and oxygen (13C and 18O) found in cellulose and pedogenic carbonate. Using previously published data collected across four continents we show that S can be used to reconstruct VPD within and across biomes. As one application, we used S to estimate VPD of 0.46 kPa ± 0.26 kPa for cellulose preserved tens of millions of years ago-in the Eocene (45 Ma) Metasequoia from Axel Heiberg Island, Canada-and 0.82 kPa ± 0.52 kPa-in the Oligocene (26 Ma) for pedogenic carbonate from Oregon, USA-both of which are consistent with existing records at those locations. Finally, we discuss mechanisms that contribute to the positive correlation observed between VPD and S, which could help reconstruct past climatic conditions and constrain future alterations of global carbon and water cycles resulting from modern climate change.

8.
Evol Dev ; 15(6): 387-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24261439
9.
Nature ; 493(7430): 89-92, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23235827

RESUMO

Ediacaran (635-542 million years ago) fossils have been regarded as early animal ancestors of the Cambrian evolutionary explosion of marine invertebrate phyla, as giant marine protists and as lichenized fungi. Recent documentation of palaeosols in the Ediacara Member of the Rawnsley Quartzite of South Australia confirms past interpretations of lagoonal-aeolian deposition based on synsedimentary ferruginization and loessic texture. Further evidence for palaeosols comes from non-marine facies, dilation cracks, soil nodules, sand crystals, stable isotopic data and mass balance geochemistry. Here I show that the uppermost surfaces of the palaeosols have a variety of fossils in growth position, including Charniodiscus, Dickinsonia, Hallidaya, Parvancorina, Phyllozoon, Praecambridium, Rugoconites, Tribrachidium and 'old-elephant skin' (ichnogenus Rivularites). These fossils were preserved as ferruginous impressions, like plant fossils, and biological soil crusts of Phanerozoic eon sandy palaeosols. Sand crystals after gypsum and nodules of carbonate are shallow within the palaeosols, even after correcting for burial compaction. Periglacial involutions and modest geochemical differentiation of the palaeosols are evidence of a dry, cold temperate Ediacaran palaeoclimate in South Australia. This new interpretation of some Ediacaran fossils as large sessile organisms of cool, dry soils, is compatible with observations that Ediacaran fossils were similar in appearance and preservation to lichens and other microbial colonies of biological soil crusts, rather than marine animals, or protists.


Assuntos
Fósseis , Sedimentos Geológicos , Animais , Organismos Aquáticos , Evolução Biológica , Invertebrados , Austrália do Sul
10.
J Hum Evol ; 42(6): 659-703, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12069506

RESUMO

The middle Miocene (15 Ma) Maboko Formation of Maboko Island and Majiwa Bluffs, southwestern Kenya, has yielded abundant fossils of the earliest known cercopithecoid monkey (Victoriapithecus macinnesi), and of a kenyapithecine hominoid (Kenyapithecus africanus), as well as rare proconsuline (Simiolus leakeyorum, cf. Limnopithecus evansi) and oreopithecine apes (Mabokopithecus clarki, M. pickfordi), and galagids (Komba winamensis). Specific habitat preferences can be interpreted from large collections of primate fossils in different kinds of paleosols (pedotypes). Fossiliferous drab-colored paleosols with iron-manganese nodules (Yom pedotype) are like modern soils of seasonally waterlogged depressions (dambo). Their crumb structure and abundant fine root-traces, as well as scattered large calcareous rhizoconcretions indicate former vegetation of seasonally wet, wooded grassland. Other fossiliferous paleosols are evidence of nyika bushland (Ratong), and early-successional riparian woodland (Dhero). No fossils were found in Mogo paleosols interpreted as saline scrub soils. Very shallow calcic horizons (in Yom, Ratong, and Mogo paleosols) and Na-montmorillonite (in Mogo) are evidence of dry paleoclimate (300-500 mm MAP=mean annual precipitation). This is the driest paleoclimate and most open vegetation yet inferred as a habitat for any Kenyan Miocene apes or monkeys. Victoriapithecus was abundant in dambo wooded grassland (Yom) and riparian woodland (Dhero), a distribution like that of modern vervet monkeys. Kenyapithecus ranged through all these paleosols, but was the most common primate in nyika bushland paleosols (Ratong), comparable to baboons and macaques today. Mabokopithecus was virtually restricted to riparian woodland paleosols (Dhero), and Simiolus had a similar, but marginally wider, distribution. Habitat preferences of Mabokopithecus and Simiolus were like those of modern colobus monkeys and mangabeys. A single specimen of Komba was found in dambo wooded grassland paleosol (Yom), a habitat more like that of the living Senegal bushbaby than of rainforest galagids. A shift to non-forest habitats may explain the terrestrial adaptations of Victoriapithecus, basal to the cercopithecid radiation, and of Kenyapithecus, basal to the hominoid radiation. Both taxa are distinct from earlier Miocene arboreal proconsulines, oreopithecines and galagids.


Assuntos
Fósseis , Sedimentos Geológicos , Primatas , Animais , Clima , Quênia
11.
Nature ; 415(6870): 387-8, 2002 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-11807543

RESUMO

I question the claim by Tanner et al. that atmospheric CO2 levels remained constant across the Triassic-Jurassic boundary on the grounds of problems with stratigraphic completeness and contamination with atmospheric methane. Because methanogenic CH4 has a light isotope composition and oxidizes readily to CO2, methane-clathrate dissociation and oxidation events cannot be detected by palaeobarometers that use the carbon-isotope composition of palaeosol carbonate.


Assuntos
Atmosfera , Evolução Biológica , Dióxido de Carbono , Dióxido de Carbono/química , Fósseis , Efeito Estufa , Metano , Folhas de Planta , Tempo
12.
Philos Trans A Math Phys Eng Sci ; 360(1793): 659-73, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12804298

RESUMO

The link between atmospheric CO(2) levels and global warming is an axiom of current public policy, and is well supported by physicochemical experiments, by comparative planetary climatology and by geochemical modelling. Geological tests of this idea seek to compare proxies of past atmospheric CO(2) with other proxies of palaeotemperature. For at least the past 300 Myr, there is a remarkably high temporal correlation between peaks of atmospheric CO(2), revealed by study of stomatal indices of fossil leaves of Ginkgo, Lepidopteris, Tatarina and Rhachiphyllum, and palaeotemperature maxima, revealed by oxygen isotopic (delta(18)O) composition of marine biogenic carbonate. Large and growing databases on these proxy indicators support the idea that atmospheric CO(2) and temperature are coupled. In contrast, CO(2)-temperature uncoupling has been proposed from geological time-series of carbon isotopic composition of palaeosols and of marine phytoplankton compared with foraminifera, which fail to indicate high CO(2) at known times of high palaeotemperature. Failure of carbon isotopic palaeobarometers may be due to episodic release of CH(4), which has an unusually light isotopic value (down to -110 per thousand, and typically -60 per thousand delta(13)C) and which oxidizes rapidly (within 7-24 yr) to isotopically light CO(2). Past CO(2) highs (above 2000 ppmv) were not only times of catastrophic release of CH(4) from clathrates, but of asteroid and comet impacts, flood basalt eruptions and mass extinctions. The primary reason for iterative return to low CO(2) was carbon consumption by hydrolytic weathering and photosynthesis, perhaps stimulated by mountain uplift and changing patterns of oceanic thermohaline circulation. Sequestration of carbon was promoted in the long term by such evolutionary innovations as the lignin of forests and the sod of grasslands, which accelerated physicochemical weathering and delivery of nutrients to fuel oceanic productivity and carbon burial.


Assuntos
Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Evolução Planetária , Isótopos de Oxigênio/análise , Folhas de Planta/metabolismo , Atmosfera/análise , Clima , Planeta Terra , Evolução Química , Fósseis , Efeito Estufa , Modelos Biológicos , Isótopos de Oxigênio/metabolismo , Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...