Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(10): 5641-8, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26893035

RESUMO

We demonstrate large area arrays of elevated gold ellipse dimers with precisely controlled gaps for use as sensitive and highly controllable surface enhanced Raman scattering (SERS) substrates. The enhanced Raman signal observed with SERS arises from both localized and long range plasmonic effects. By controlling the geometry of a SERS substrate, in this case the size and aspect ratio of individual ellipses, the plasmon resonance can be tuned in a broad wavelength range, providing a method for designing the response of SERS substrates at different excitation wavelengths. Plasmon effects exhibited by the elevated gold ellipse dimer substrates are also demonstrated and confirmed through finite difference time domain (FDTD) simulations. A plasmon resonance red shift with an increase of the ellipse aspect ratio is observed, allowing systematic control of the resulting SERS signal intensity. Optimized elevated ellipse dimer substrates with 10 ± 2 nm gaps exhibit uniform SERS enhancement factors on the order of 10(9) for adsorbed p-mercaptoaniline molecules.

2.
Lab Chip ; 15(8): 1799-811, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25740172

RESUMO

Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.


Assuntos
Proteínas de Fluorescência Verde/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Cromatografia em Gel , Cromatografia por Troca Iônica , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação
3.
Lab Chip ; 13(6): 1165-71, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23370894

RESUMO

Microfluidic and nanofluidic devices have undergone rapid development in recent years. Functions integrated onto such devices provide lab-on-a-chip solutions for many biomedical, chemical, and engineering applications. In this paper, a lab-on-a-chip technique for direct visualization of the single- and two-phase pressure-driven flows in nano-scale channels was developed. The nanofluidic chip was designed and fabricated; concentration dependent fluorescence signal correlation was developed for the determination of flow rate. Experiments of single and two-phase flow in nano-scale channels with 100 nm depth were conducted. The linearity correlation between flow rate and pressure drop in nanochannels was obtained and fit closely into Poiseuille's Law. Meanwhile, three different flow patterns, single, annular, and stratified, were observed from the two-phase flow in the nanochannel experiments and their special features were described. A two-phase flow regime map for nanochannels is presented. Results are of critical importance to both fundamental study and many applications.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Gases/química , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Nitrogênio/química , Pressão
4.
J Neural Eng ; 5(4): 385-91, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18827310

RESUMO

Implantable electrode arrays capable of recording and stimulating neural activity with high spatial and temporal resolution will provide a foundation for future brain computer interface technology. Currently, their clinical impact has been curtailed by a general lack of functional stability, which can be attributed to the acute and chronic reactive tissue responses to devices implanted in the brain. Control of the tissue environment surrounding implanted devices through local drug delivery could significantly alter both the acute and chronic reactive responses, and thus enhance device stability. Here, we characterize pressure-mediated release of test compounds into rat cortex using an implantable microfluidic platform. A fixed volume of fluorescent cell marker cocktail was delivered using constant pressure infusion at reservoir backpressures of 0, 5 and 10 psi. Affected tissue volumes were imaged and analyzed using epifluorescence and confocal microscropies and quantitative image analysis techniques. The addressable tissue volume for the 5 and 10 psi infusions, defined by fluorescent staining with Hoescht 33342 dye, was significantly larger than the tissue volume addressed by simple diffusion (0 psi) and the tissue volume exhibiting insertion-related cell damage (stained by propidium iodide). The results demonstrate the potential for using constant pressure infusion to address relevant tissue volumes with appropriate pharmacologies to alleviate reactive biological responses around inserted neuroprosthetic devices.


Assuntos
Bombas de Infusão Implantáveis , Neocórtex/fisiologia , Algoritmos , Animais , Benzimidazóis , Corantes , Desenho de Equipamento , Azul Evans , Corantes Fluorescentes , Processamento de Imagem Assistida por Computador , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Nanotecnologia , Pressão , Propídio , Ratos , Ratos Sprague-Dawley
5.
Nanotechnology ; 19(41)2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21394229

RESUMO

A simulation is presented here that serves the dual functions of generating a nanoporous membrane replica and executing the Brownian motion of nanoparticles through the virtual membrane. Specifically, the concentration profile of a dilute solution of fluorescent particles in a stochastic and SiO(2)-coated carbon nanofiber (oxCNF), nanoporous membrane was simulated. The quality of the simulated profile was determined by comparing the results with experimental concentration profiles. The experimental concentration profiles were collected adjacent to the oxCNF membrane surface from time-lapse fluorescence microscopy images. The simulation proved ideal as an accurate predictor of particle diffusion-the simulated concentration profile merged with the experimental profiles at the inlet/exit surfaces of the oxCNF membrane. In particular, the oxCNF barrier was found to hinder the transport of 50 and 100 nm particles and transmembrane trajectories were indicative of anomalous subdiffusion; the diffusion coefficient was found to be a function of time and space.

6.
Ultramicroscopy ; 107(10-11): 934-42, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17574761

RESUMO

Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.


Assuntos
Escherichia coli/ultraestrutura , Microscopia de Força Atômica/métodos , Esferoplastos/ultraestrutura , Elasticidade , Escherichia coli/fisiologia
7.
Nanotechnology ; 17(22): 5659-68, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727339

RESUMO

Rapid and selective molecular exchange across a barrier is essential for emulating the properties of biological membranes. Vertically-aligned carbon nanofibre (VACNF) forests have shown great promise as membrane mimics, owing to their mechanical stability, their ease of integration with microfabrication technologies and the ability to tailor their morphology and surface properties. However, quantifying transport through synthetic membranes having micro- and nanoscale features is challenging. Here, fluorescence recovery after photobleaching (FRAP) is coupled with finite difference and Monte Carlo simulations to quantify diffusive transport in microfluidic structures containing VACNF forests. Anomalous subdiffusion was observed for FITC (hydrodynamic radius of 0.54 nm) diffusion through both VACNFs and SiO(2)-coated VACNFS (oxVACNFs). Anomalous subdiffusion can be attributed to multiple FITC-nanofibre interactions for the case of diffusion through the VACNF forest. Volume crowding was identified as the cause of anomalous subdiffusion in the oxVACNF forest. In both cases the diffusion mode changes to a time-independent, Fickian mode of transport that can be defined by a crossover length (R(CR)). By identifying the space-and time-dependent transport characteristics of the VACNF forest, the dimensional features of membranes can be tailored to achieve predictable molecular exchange.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...