Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(17): 5773-5784, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37586065

RESUMO

Hybrid density functional theory (DFT) remains intractable for large periodic systems due to the demanding computational cost of exact exchange. We apply the tensor hypercontraction (THC) (or interpolative separable density fitting) approximation to periodic hybrid DFT calculations with Gaussian-type orbitals using the Gaussian plane wave approach. This is done to lower the computational scaling with respect to the number of basis functions (N) and k-points (Nk) at a fixed system size. Additionally, we propose an algorithm to fit only occupied orbital products via THC (i.e., a set of points, NISDF) to further reduce computation time and memory usage. This algorithm has linear scaling cost with k-points, no explicit dependence of NISDF on basis set size, and overall cubic scaling with unit cell size. Significant speedups and reduced memory usage may be obtained for moderately sized k-point meshes, with additional gains for large k-point meshes. Adequate accuracy can be obtained using THC-oo-K for self-consistent calculations. We perform illustrative hybrid density function theory calculations on the benzene crystal in the basis set and thermodynamic limits to highlight the utility of this algorithm.

2.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114707

RESUMO

We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.

3.
J Chem Theory Comput ; 18(12): 7336-7349, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459992

RESUMO

In this work, we developed and showcased the occ-RI-K algorithm to compute the exact exchange contribution in density functional calculations of solids near the basis set limit. Within the Gaussian planewave (GPW) density fitting, our algorithm achieves a 1-2 orders of magnitude speedup compared to conventional GPW algorithms. Since our algorithm is well suited for simulations with large basis sets, we applied it to 12 hybrid density functionals with pseudopotentials and a large uncontracted basis set to assess their performance on band gaps of 25 simple solids near the basis set limit. The largest calculation performed in this work involves 16 electrons and 350 basis functions in the unit cell utilizing a 6 × 6 × 6 k-mesh. With 20-27% exact exchange, global hybrid functionals (B3LYP, PBE0, revPBE0, B97-3, SCAN0) perform similarly with a root-mean-square deviation (RMSD) of 0.61-0.77 eV, while other global hybrid functionals such as M06-2X (2.02 eV) and MN15 (1.05 eV) show higher RMSD due to their increased fraction of exact exchange. A short-range hybrid functional, HSE achieves a similar RMSD (0.76 eV) but shows a notable underestimation of band gaps due to the complete lack of long-range exchange. We found that two combinatorially optimized range-separated hybrid functionals, ωB97X-rV (3.94 eV) and ωB97M-rV (3.40 eV), and the two other range-separated hybrid functionals, CAM-B3LYP (2.41 eV) and CAM-QTP01 (4.16 eV), significantly overestimate the band gap because of their high fraction of long-range exact exchange. Given the failure of ωB97X-rV and ωB97M-rV, we have yet to find a density functional that offers consistent performance for both molecules and solids. Our algorithm development and density functional assessment will serve as a stepping stone toward developing more accurate hybrid functionals and applying them to practical applications.

4.
J Chem Theory Comput ; 18(9): 5382-5392, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36050889

RESUMO

Optimizing orbitals in the presence of electron correlation, as in orbital-optimized second-order Møller-Plesset perturbation theory (OOMP2), can remove artifacts associated with mean-field orbitals such as spin contamination and artificial symmetry-breaking. However, OOMP2 is known to suffer from divergent correlation energies in regimes of small orbital energy gaps. To address this issue, several approaches to amplitude regularization have been explored, with those featuring energy-gap-dependent regularizers appearing to be most transferable and physically justifiable. For instance, κ-OOMP2 was shown to address the energy divergence issue in, for example, bond-breaking processes while offering a significant improvement in accuracy for the W4-11 thermochemistry data set, and a parameter of κ = 1.45 was recommended. A more recent investigation of regularized MP2 with Hartree-Fock orbitals revealed that stronger regularization (i.e., smaller values of κ) than what had previously been recommended for κ-OOMP2 may offer huge improvements in certain cases such as noncovalent interactions while retaining a high level of accuracy for main-group thermochemistry data sets. In this study, we investigate the transferability of those findings to κ-OOMP2 and assess the implications of stronger regularization on the ability of κ-OOMP2 to diagnose strong static correlation. We found similar results using κ-OOMP2 for several main-group thermochemistry, barrier height, and noncovalent interaction data sets including both closed shell and open shell species. However, stronger regularization yielded substantially higher accuracy for open-shell transition-metal (TM) thermochemistry and is necessary to provide qualitatively correct spin symmetry breaking behavior for several large and electrochemically relevant TM systems. We therefore find a single κ value insufficient to treat all systems using κ-OOMP2.

5.
J Phys Chem Lett ; 12(50): 12084-12097, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34910484

RESUMO

Second-order Møller-Plesset theory (MP2) notoriously breaks down for π-driven dispersion interactions and dative bonds in transition metal complexes. Herein, we investigate three physically justified forms of single-parameter, energy-gap dependent regularization which can yield high and transferable accuracy for a variety of noncovalent interactions (including S22, S66, and L7 test sets) and (mostly closed shell) transition metal thermochemistry. Regularization serves to damp overestimated pairwise additive contributions, renormalizing first-order amplitudes such that the effects of higher-order correlations are incorporated. The optimal parameter values for the noncovalent and transition metal sets are 1.1, 0.7, and 0.4 for κ, σ, and σ2 regularizers, respectively. However, such regularization slightly degrades the accuracy of conventional MP2 for some small-molecule test sets, most of which have relatively large average frontier energy gaps. Our results suggest that appropriately regularized MP2 models may improve double hybrid density functionals, at no additional cost over conventional MP2.

6.
J Phys Chem Lett ; 12(44): 10768-10776, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714997

RESUMO

Ethynylsilylene (HCCSiH; X1A') has been prepared in the gas phase through the elementary reaction of singlet dicarbon (C2) with silane (SiH4) under single-collision conditions. Electronic structure calculations reveal a barrierless reaction pathway involving 1,1-insertion of dicarbon into one of the silicon-hydrogen bonds followed by hydrogen migration to form the 3-sila-methylacetylene (HCCSiH3) intermediate. The intermediate undergoes unimolecular decomposition through molecular hydrogen loss to ethynylsilylene (HCCSiH; Cs; X1A'). The dicarbon-silane system defines a benchmark to explore the consequence of a single collision between the simplest "only carbon" molecule (dicarbon) with the prototype of a closed-shell silicon hydride (silane) yielding a nonclassical silacarbene, whose molecular geometry and electronic structure are quite distinct from the isovalent triplet propargylene (HCCCH; C2; 3B) carbon-counterpart. These organosilicon transients cannot be prepared through traditional organic, synthetic methods, thus opening up a versatile path to access the previously largely elusive class of silacarbenes.

7.
Mol Phys ; 119(21-22)2021.
Artigo em Inglês | MEDLINE | ID: mdl-35264815

RESUMO

Magnetic properties of molecules such as magnetizabilities represent second order derivatives of the energy with respect to external perturbations. To avoid the need for analytic second derivatives and thereby permit evaluation of the performance of methods where they are not available, a new implementation of quantum chemistry calculations in finite applied magnetic fields is reported. This implementation is employed for a collection of small molecules with the aug-cc-pVTZ basis set to assess orbital optimized (OO) MP2 and a recently proposed regularized variant of OOMP2, called κ-OOMP2. κ-OOMP2 performs significantly better than conventional second order Møller-Plesset (MP2) theory, by reducing MP2's exaggeration of electron correlation effects. As a chemical application, we revisit an old aromaticity criterion called magnetizability exaltation. In lieu of empirical tables or increment systems to generate references, we instead use straight chain molecules with the same formal bond structure as the target cyclic planar conjugated molecules. This procedure is found to be useful for qualitative analysis, yielding exaltations that are typically negative for aromatic species and positive for antiaromatic molecules. One interesting species, N2S2, shows a positive exaltation despite having aromatic characteristics.

8.
J Chem Theory Comput ; 16(12): 7473-7489, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33161713

RESUMO

The practical utility of Møller-Plesset (MP) perturbation theory is severely constrained by the use of Hartree-Fock (HF) orbitals. It has recently been shown that the use of regularized orbital-optimized MP2 orbitals and scaling of MP3 energy could lead to a significant reduction in MP3 error [Bertels, L. W.; J. Phys. Chem. Lett. 2019, 10, 4170 4176]. In this work, we examine whether density functional theory (DFT)-optimized orbitals can be similarly employed to improve the performance of MP theory at both the MP2 and MP3 levels. We find that the use of DFT orbitals leads to significantly improved performance for prediction of thermochemistry, barrier heights, noncovalent interactions, and dipole moments relative to the standard HF-based MP theory. Indeed, MP3 (with or without scaling) with DFT orbitals is found to surpass the accuracy of coupled-cluster singles and doubles (CCSD) for several data sets. We also found that the results are not particularly functional sensitive in most cases (although range-separated hybrid functionals with low delocalization error perform the best). MP3 based on DFT orbitals thus appears to be an efficient, noniterative O(N6) scaling wave-function approach for single-reference electronic structure computations. Scaled MP2 with DFT orbitals is also found to be quite accurate in many cases, although modern double hybrid functionals are likely to be considerably more accurate.

9.
Phys Chem Chem Phys ; 21(39): 21761-21775, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552963

RESUMO

Linear response time dependent density functional theory (TDDFT), which builds upon configuration interaction singles (CIS) and TD-Hartree-Fock (TDHF), is the most widely used class of excited state quantum chemistry methods and is often employed to study photochemical processes. This paper studies the behavior of the resulting excited state potential energy surfaces beyond the Coulson-Fischer (CF) point in single bond dissociations, when the optimal reference determinant is spin-polarized. Many excited states exhibit sharp kinks at the CF point, and connect to different dissociation limits via a zone of unphysical concave curvature. In particular, the unrestricted MS = 0 lowest triplet T1 state changes character, and does not dissociate into ground state fragments. The unrestricted MS = ±1 T1 CIS states better approximate the physical dissociation limit, but their degeneracy is broken beyond the CF point for most single bond dissociations. On the other hand, the MS = ±1 T1 TDHF states reach the asymptote too soon, by merging with the ground state from the CF point onwards. Use of local exchange-correlation functionals causes MS = ±1 T1 TDDFT states to resemble their unphysical MS = 0 counterpart. The 2 orbital, 2-electron model system of minimal basis H2 is analytically treated to understand the origin of these issues, revealing that the lack of double excitations is at the root of these remarkable observations. The behavior of excited state surfaces is also numerically examined for species like H2, NH3, C2H6 and LiH in extended basis sets.

10.
J Chem Phys ; 150(9): 094115, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849907

RESUMO

Unrestricted density functional theory (DFT) methods are typically expected to describe the homolytic dissociation of nonpolar single bonds in neutral species with qualitative accuracy, due to the lack of significant delocalization error. We however find that many widely used density functional approximations fail to describe features along the dissociation curve of the simple H2 molecule. This is not a universal failure of DFT in the sense that many classic functionals like PBE and B3LYP give very reasonable results, as do some more modern methods like MS2. However, some other widely used functionals like B97-D (empirically fitted) and TPSS (non-empirically constrained) predict qualitatively wrong static polarizabilities, force constants, and some even introduce an artificial barrier against association of independent H atoms to form H2. The polarizability and force constant prediction failures appear to stem from incomplete spin localization into individual H atoms beyond the Coulson-Fischer point, resulting in "fractionally bonded" species where the ionic contributions to the Slater determinant are not completely eliminated, unlike the case of unrestricted Hartree-Fock. These errors therefore appear to be a consequence of poor self-consistent density prediction by the problematic functional. The same reasons could potentially lead to spurious barriers toward H atom association, indirectly also leading to incorrect forces. These unphysicalities suggest that the use of problematic functionals is probably unwise in ab initio dynamics calculations, especially if strong electrostatic interactions are possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...