Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6668): 310-314, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856598

RESUMO

Polyolefins are the most important and largest volume plastics produced. Unfortunately, the enormous use of plastics and lack of effective disposal or recycling options have created a plastic waste catastrophe. In this work, we report an approach to create chemically recyclable polyolefin-like materials with diverse mechanical properties through the construction of multiblock polymers from hard and soft oligomeric building blocks synthesized with ruthenium-mediated ring-opening metathesis polymerization of cyclooctenes. The multiblock polymers exhibit broad mechanical properties, spanning elastomers to plastomers to thermoplastics, while integrating a high melting transition temperature (Tm) and low glass transition temperature (Tg), making them suitable for use across diverse applications (Tm as high as 128°C and Tg as low as -60°C). After use, the different plastics can be combined and efficiently deconstructed back to the fundamental hard and soft building blocks for separation and repolymerization to realize a closed-loop recycling process.

2.
Macromolecules ; 51(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-38606324

RESUMO

To fully explore bottlebrush polymer networks as potential model materials, a robust and versatile synthetic platform is required. Ring-opening metathesis polymerization is a highly controlled, rapid, and functional group tolerant polymerization technique that has been used extensively for bottlebrush polymer generation but to this point has not been used to synthesize bottlebrush polymer networks. We polymerized a mononorbornene macromonomer and dinorbornene cross-linker (both poly(n-butyl acrylate)) with Grubbs' third-generation catalyst to achieve bottlebrush networks and in turn demonstrated control over network properties as the ratio of macromonomer and cross-linker was varied. Macromonomer to cross-linker ratios ([MM]/[XL]) of 10 to 100 were investigated, of which all derivative networks yielded gel fractions over 90%. Because of its amenability toward small samples, contact adhesion testing was used to quantify dry-state shear modulus G, which ranged from 1 to 10 kPa, reinforcing that bottlebrush polymer networks can achieve low moduli in the dry state compared to other polymer network materials through the mitigation of entanglements. A scaling relationship was found such that G∼([MM]/[XL])-0.81, indicating that macromonomer to cross-linker ratio is a good estimator of cross-linking density. The swelling ratio in toluene, Q, was compared to dry-state modulus to test the universal scaling relationship for linear networks G∼Q-1.75, and a measured exponent of -1.71 indicated good agreement. The synthetic platform outlined here represents a highly flexible route to a myriad of different bottlebrush networks and will increase the accessibility of materials critical to applications ranging from fundamental to biomedical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...