Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(3): e4915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358250

RESUMO

Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects a majority of the world population. It may cause severe disease in immunocompromised people and lead to pregnancy loss or grave disabilities of the fetus upon congenital infection. For effective replication and lifelong persistence in its host, HCMV relies on diverse functions of its tegument protein UL82, also known as pp71. Up to now, little is known about the molecular mechanisms underlying the multiple functions of this crucial viral protein. Here, we describe the X-ray structure of full-length UL82 to a resolution of 2.7 Å. A single polypeptide chain of 559 amino acids mainly folds into three ß-barrels. We show that UL82 forms a dimer in the crystal as well as in solution. We identify point mutations that disturb the dimerization interface and show that the mutant protein is monomeric in solution and upon expression in human cells. On the basis of the three-dimensional structure, we identify structural homologs of UL82 from other herpesviruses and analyze whether their functions are preserved in UL82. We demonstrate that UL82, despite its structural homology to viral deoxyuridinetriphosphatases (dUTPases), does not possess dUTPase activity. Prompted by the structural homology of UL82 to the ORF10 protein of murine herpesvirus 68 (MHV68), which is known to interact with the RNA export factor ribonucleic acid export 1 (Rae1), we performed coimmunoprecipitations and demonstrated that UL82 indeed interacts with Rae1. This suggests that HCMV UL82 may play a role in mRNA export from the nucleus similar to ORF10 encoded by the gammaherpesviruses MHV68.


Assuntos
Citomegalovirus , Proteínas Virais , Animais , Camundongos , Humanos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Linhagem Celular , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Sci Rep ; 13(1): 17218, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821577

RESUMO

Transgenic expression of protective molecules in porcine cells and tissues is a promising approach to prevent xenograft rejection. Viruses have developed various strategies to escape the host's immune system. We generated porcine B cells (B cell line L23) expressing the human adenovirus protein E3/49K or the human cytomegalovirus protein pUL11 and investigated how human T, NK and B cell responses are affected by the expression of the viral proteins. Binding studies revealed that E3/49K and pUL11 interact with CD45 on human but not porcine peripheral blood mononuclear cells. T cell proliferation in response to L23-E3/49K cells was significantly reduced and accompanied by development of an anti-inflammatory cytokine milieu (low: TNF-alpha, IFN-gamma, IL-6; high: IL-4, IL-10). Human peripheral blood mononuclear cells which had been primed for four weeks by L23-E3/49K cells included an extended population of regulatory T cells. Cytotoxicity of effector T and natural killer cells against L23 cells was significantly reduced (40 to 50%) by E3/49K expression. B cell activation and antibody production to E3/49K expressing cells was also diminished. Surprisingly, pUL11 expression showed no effects. Reduction of human anti-pig immune responses by transgenic expression of selected viral genes may be a novel approach for protection of porcine xenografts.


Assuntos
Células Matadoras Naturais , Leucócitos Mononucleares , Animais , Humanos , Suínos , Leucócitos Mononucleares/metabolismo , Ligantes , Células Matadoras Naturais/metabolismo , Células Cultivadas , Animais Geneticamente Modificados , Citomegalovirus/metabolismo , Proteínas Virais/genética , Imunidade
3.
J Virol ; 97(5): e0189822, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37125921

RESUMO

Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.


Assuntos
Proteínas E3 de Adenovirus , Adenovírus Humanos , Humanos , Adenoviridae/metabolismo , Proteínas E3 de Adenovirus/química , Proteínas E3 de Adenovirus/metabolismo , Dimerização , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos Comuns de Leucócito
4.
Biochem Biophys Res Commun ; 661: 50-55, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37087798

RESUMO

The Gram-negative bacterium Legionella pneumophila is an accidental human pathogen that can cause a life-threatening respiratory infection called Legionellosis. In the course of infection, L. pneumophila injects more than 300 effector proteins into the host cell. The effector proteins modify the intracellular environment in order to create a stable compartment for proliferation within the host cell. The effector protein SidI has been shown to potently inhibit host translation upon translocation. SidI is able to interact with the translation elongation factor eEF1A, which has been hypothesized to be a target of SidI. A postulated glycosyltransferase domain in the C-terminal half may be responsible for the toxic effect of SidI. Here, we present the crystal structure of an N-terminal fragment of SidI containing residues 37-573. The structure is divided into three subdomains, two of which display a novel fold. The third subdomain shows close structural homology to GT-B fold glycosyltransferases. Based on structural analysis we predict that the two previously identified residues R453 and E482 assume roles in the catalytic activity of SidI. Furthermore, we show that the N-terminal fragment of SidI is able to directly interact with a postulated target, the translation elongation factor eEF1A.


Assuntos
Legionella pneumophila , Humanos , Legionella pneumophila/genética , Glucosiltransferases/metabolismo , Biossíntese de Proteínas , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142182

RESUMO

The cytosolic immune receptor NLRP3 (nucleotide-binding domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3) oligomerizes into the core of a supramolecular complex termed inflammasome in response to microbes and danger signals. It is thought that NLRP3 has to bind NEK7 (NIMA (never in mitosis gene a)-related kinase 7) to form a functional inflammasome core that induces the polymerization of the adaptor protein ASC (Apoptosis-associated speck-like protein containing a CARD (caspase recruitment domain)), which is a hallmark for NLRP3 activity. We reconstituted the NLRP3 inflammasome activity in modified HEK293 (human embryonic kidney 293) cells and showed that the ASC speck polymerization is independent of NEK7 in the context of this cell system. Probing the interfaces observed in the different, existing structural models of NLRP3 oligomers, we present evidence that the NEK7-independent, constitutively active NLRP3 inflammasome core in HEK293 cells may resemble a stacked-torus-like hexamer seen for NLRP3 lacking its PYD (pyrin domain).


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Células HEK293 , Humanos , Inflamassomos/metabolismo , Leucina , Quinases Relacionadas a NIMA/genética , Nucleotídeos/metabolismo
6.
Biotechniques ; 70(6): 350-354, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114503

RESUMO

Multicomponent protein complexes called inflammasomes play a major role in the innate immune system by activating proinflammatory cytokines and promoting a highly inflammatory form of programmed cell death, called pyroptosis. A hallmark of the function of the nucleotide-binding domain, leucine-rich repeat and NLRP3-mediated inflammasome assembly is the polymerization of ASC into large filaments. The ASC filaments recruit and activate procaspase-1 by induced proximity. We developed an in vitro assay for monitoring the polymerization of the pyrin domain of ASC by microscale thermophoresis. We have validated the assay by analyzing the effects of buffer conditions, mutations of ASC and the use of seeds on the polymerization behavior of ASC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/química , Proteína 3 que Contém Domínio de Pirina da Família NLR , Domínio Pirina , Apoptose , Inflamassomos , Polimerização
7.
Biochem Biophys Res Commun ; 527(3): 696-701, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32423822

RESUMO

Persistence and replication of the gram-negative bacterium Legionella pneumophila in the human host cell depend on so-called effector proteins that target diverse cellular functions and modulate them in favor of the pathogen. We solved the crystal structure of the L. pneumophila effector protein MesI de novo to a resolution of 2.2 Å. The 34 kDa polypeptide chain folds into two distinct α-helical domains. The larger C-terminal domain shows similarity to tetratricopeptide repeat proteins. Using size-exclusion chromatography, we confirmed that MesI binds tightly to full-length SidI and that deletion of either the N- or the C-terminus weakens the interaction. Based on the three-dimensional structure of MesI we suggest a possible binding mode for SidI and identified two homologs of MesI within the proteome of L. pneumophila that do not bind to SidI, but may act as specific inhibitors of other yet to be identified effectors.


Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/fisiologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Modelos Moleculares , Conformação Proteica
8.
J Am Soc Nephrol ; 30(7): 1220-1237, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235616

RESUMO

BACKGROUND: CD2-associated protein (CD2AP), a slit diaphragm-associated scaffolding protein involved in survival and regulation of the cytoskeleton in podocytes, is considered a "stabilizer" of the slit diaphragm complex that connects the slit diaphragm protein nephrin to the cytoskeleton of the cell. Tyrosine phosphorylation of slit diaphragm molecules can influence their surface expression, but it is unknown whether tyrosine phosphorylation events of CD2AP are also physiologically relevant to slit diaphragm stability. METHODS: We used isoelectric focusing, western blot analysis, and immunofluorescence to investigate phosphorylation of CD2AP, and phospho-CD2AP antibodies and site-directed mutagenesis to define the specific phosphorylated tyrosine residues. We used cross-species rescue experiments in Cd2apKD zebrafish and in Drosophila cindrRNAi mutants to define the physiologic relevance of CD2AP phosphorylation of the tyrosine residues. RESULTS: We found that VEGF-A stimulation can induce a tyrosine phosphorylation response in CD2AP in podocytes, and that these phosphorylation events have an important effect on slit diaphragm protein localization and functionality in vivo. We demonstrated that tyrosine in position Y10 of the SH3-1 domain of CD2AP is indispensable for CD2AP function in vivo. We found that the binding affinity of nephrin to CD2AP is significantly enhanced in the absence of Y10; however, unexpectedly, this increased affinity leads not to stabilization but to functional impairment of the glomerular filtration barrier. CONCLUSIONS: Our findings provide insight into CD2AP and its phosphorylation in the context of slit diaphragm functionality, and indicate a fine-tuned affinity balance of CD2AP and nephrin that is influenced by receptor tyrosine kinase stimulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/química , Tirosina/metabolismo , Animais , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Fosforilação , Podócitos/metabolismo , Estabilidade Proteica , Fator A de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra
9.
Biol Chem ; 399(12): 1421-1432, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30067507

RESUMO

Dynamins are essential as membrane remodelers in various cellular processes, like receptor-mediated endocytosis, synaptic vesicle recycling and spermatogenesis. Moreover, dynamin is involved in the internalization of numerous viruses and in the motility of several cancer cell lines. As tools for dissecting the underlying mechanisms of these important biological processes and as potential future therapeutics, small molecules have been developed in the last two decades that modulate the functions of dynamin. In this review we give an overview of the compound classes that are currently in use and describe how they affect dynamin function.


Assuntos
Dinaminas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
10.
Biochem Biophys Res Commun ; 482(4): 530-535, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27865841

RESUMO

Survivin inhibits apoptosis in numerous tumor cell lines and has emerged as promising target for cancer therapy. The anti-apoptotic effect of survivin was attributed to a direct interaction with XIAP (X-linked inhibitor of apoptosis) and to an indirect effect, where survivin antagonizes the anti-XIAP action of Smac. The direct interaction is thought to lead to synergistic inhibition of caspase-9 and, at the same time, to enhanced stability of XIAP by reducing its auto-ubiquitination. Using recombinant proteins, we have investigated the influence of survivin on the inhibition of caspase-9 by XIAP in vitro. With a fluorescence-based assay for the apoptosome-stimulated activity of caspase-9, we show that survivin has no effect on the inhibition of caspase-9 by XIAP, neither in the presence nor in the absence of Smac. Employing analytical size exclusion chromatography (SEC) and analytical ultracentrifugation, we show that survivin does not physically interact with XIAP. We confirm in vitro that XIAP ubiquitinates itself in the presence of the appropriate recombinant enzymes and Mg2+-ATP and could show that survivin neither influences the kinetics nor the extent of XIAP's self-ubiquitination. Our results call for a revision of the current view of how survivin interferes with the mitochondrial pathway of apoptosis.


Assuntos
Apoptose , Caspase 9/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteínas Reguladoras de Apoptose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Survivina , Ubiquitinação
11.
Biochem Biophys Res Commun ; 469(1): 76-80, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612256

RESUMO

Dynamin is the prototype of a family of large multi-domain GTPases. The 100 kDa protein is a key player in clathrin-mediated endocytosis, where it cleaves off vesicles from membranes using the energy from GTP hydrolysis. We have solved the high resolution crystal structure of a fusion protein of the GTPase domain and the bundle signalling element (BSE) of dynamin 1 liganded with GDP. The structure provides a hitherto missing snapshot of the GDP state of the hydrolytic cycle of dynamin and reveals how the switch I region moves away from the active site after GTP hydrolysis and release of inorganic phosphate. Comparing our structure of the GDP state with the known structures of the GTP state, the transition state and the nucleotide-free state of dynamin 1 we describe the structural changes through the hydrolytic cycle.


Assuntos
Dinaminas/química , Dinaminas/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/ultraestrutura , Guanosina Difosfato/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Cristalografia , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
12.
Nature ; 525(7569): 404-8, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26302298

RESUMO

The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction.


Assuntos
Dinaminas/antagonistas & inibidores , Dinaminas/química , Multimerização Proteica , Doença de Charcot-Marie-Tooth , Cristalografia por Raios X , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Cadeias de Markov , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Miopatias Congênitas Estruturais , Nucleotídeos , Multimerização Proteica/genética , Relação Estrutura-Atividade
13.
Microb Cell ; 2(5): 150-162, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28357287

RESUMO

Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome cin vitro and in vivo indicated that T. gondii also interferes with caspase activation in infected cells. Importantly, parasite inhibition of cytochrome c-induced caspase activation considerably contributes to the overall anti-apoptotic activity of T. gondii as observed in staurosporine-treated cells. Co-immunoprecipitation showed that T. gondii abolishes binding of caspase 9 to Apaf-1 whereas the interaction of cytochrome c with Apaf-1 remains unchanged. Finally, T. gondii lysate mimics the effect of viable parasites and prevents holo-apoptosome functionality in a reconstituted in vitro system comprising recombinant Apaf-1 and caspase 9. Beside inhibition of cytochrome c release from host cell mitochondria, T. gondii thus also targets the holo-apoptosome assembly as a second mean to efficiently inhibit the caspase-dependent intrinsic cell death pathway.

14.
FEBS Lett ; 588(18): 3327-32, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25064844

RESUMO

The NOD-like receptor NLRP1 (NLR family, pyrin domain containing 1) senses the presence of the bacterial cell wall component l-muramyl dipeptide (MDP) inside the cell. We determined the crystal structure of the LRR domain of human NLRP1 in the absence of MDP to a resolution of 1.65Å. The fold of the structure can be assigned to the ribonuclease inhibitor-like class of LRR proteins. We compared our structure with X-ray models of the LRR domains of NLRX1 and NLRC4 and a homology model of the LRR domain of NOD2. We conclude that the MDP binding site of NLRP1 is not located in the LRR domain.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Proteínas NLR , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Homologia Estrutural de Proteína
15.
Biochemistry ; 52(13): 2319-27, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23521171

RESUMO

Apoptosome assembly is highly regulated in the intrinsic cell death pathway. To better understand this step, we created an improved model of the human apoptosome using a crystal structure of full length Apaf-1 and a single particle, electron density map at ~9.5 Å resolution. The apoptosome model includes N-terminal domains of Apaf-1, cognate ß-propellers, and cytochrome c. A direct comparison of Apaf-1 in the apoptosome and as a monomer reveals conformational changes that occur during the first two steps of assembly. This includes an induced-fit mechanism for cytochrome c binding to regulatory ß-propellers, which is dependent on shape and charge complementarity, and a large rotation of the nucleotide binding module during nucleotide exchange. These linked conformational changes create an extended Apaf-1 monomer and drive apoptosome assembly. Moreover, the N-terminal CARD in the inactive Apaf-1 monomer is not shielded from other proteins by ß-propellers. Hence, the Apaf-1 CARD may be free to interact with a procaspase-9 CARD either before or during apoptosome assembly. Irrespective of the timing, the end product of assembly is a holo-apoptosome with an acentric CARD-CARD disk and tethered pc-9 catalytic domains. Subsequent activation of pc-9 leads to a proteolytic cascade and cell death.


Assuntos
Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/química , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Apoptossomas/química , Citocromos c/química , Citocromos c/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica
16.
Cell Signal ; 24(7): 1420-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22446004

RESUMO

Apoptosomes are signaling platforms that initiate the dismantling of a cell during apoptosis. In mammals, assembly of the apoptosome is the pivotal point in the mitochondrial pathway of apoptosis, and is prompted by binding of cytochrome c to the apoptotic protease-activating factor 1 (Apaf-1) in the presence of ATP. The resulting wheel-like heptamer of seven molecules Apaf-1 and seven molecules cytochrome c binds and activates the initiator caspase-9, which in turn ignites the downstream caspase cascade. In this review we discuss the molecular determinants for the formation of the mammalian apoptosome and caspase activation and describe the related signaling platforms in flies and nematodes.


Assuntos
Apoptose/genética , Apoptossomas/química , Fator Apoptótico 1 Ativador de Proteases/química , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptossomas/metabolismo , Caspase 9/genética , Citocromos c/química , Citocromos c/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
17.
Structure ; 19(8): 1074-83, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21827944

RESUMO

The apoptotic protease-activating factor 1 (Apaf-1) relays the death signal in the mitochondrial pathway of apoptosis. Apaf-1 oligomerizes on binding of mitochondrially released cytochrome c into the heptameric apoptosome complex to ignite the downstream cascade of caspases. Here, we present the 3.0 Å crystal structure of full-length murine Apaf-1 in the absence of cytochrome c. The structure shows how the mammalian death switch is kept in its "off" position. By comparing the off state with a recent cryo-electron microscopy derived model of Apaf-1 in its apoptosomal conformation, we depict the molecular events that transform Apaf-1 from autoinhibited monomer to a building block of the caspase-activating apoptosome. Moreover, we have solved the crystal structure of the R265S mutant of full-length murine Apaf-1 in the absence of cytochrome c to 3.55 Å resolution and we show that proper function of Apaf-1 relies on R265 in the vicinity of the bound nucleotide.


Assuntos
Apoptose , Fator Apoptótico 1 Ativador de Proteases/química , Mitocôndrias/fisiologia , Transdução de Sinais , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/química , Cristalografia por Raios X , Ativação Enzimática , Ensaios Enzimáticos , Camundongos , Mutação de Sentido Incorreto , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
J Biol Chem ; 284(47): 32717-24, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19801675

RESUMO

The cytosolic adaptor protein Apaf-1 is a key player in the intrinsic pathway of apoptosis. Binding of mitochondrially released cytochrome c and of dATP or ATP to Apaf-1 induces the formation of the heptameric apoptosome complex, which in turn activates procaspase-9. We have re-investigated the chain of events leading from monomeric autoinhibited Apaf-1 to the functional apoptosome in vitro. We demonstrate that Apaf-1 does not require energy from nucleotide hydrolysis to eventually form the apoptosome. Despite a low intrinsic hydrolytic activity of the autoinhibited Apaf-1 monomer, nucleotide hydrolysis does not occur at any stage of the process. Rather, mere binding of ATP in concert with the binding of cytochrome c primes Apaf-1 for assembly. Contradicting the current view, there is no strict requirement for an adenine base in the nucleotide. On the basis of our results, we present a new model for the mechanism of apoptosome assembly.


Assuntos
Apoptossomas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/química , Caspases/metabolismo , Trifosfato de Adenosina/química , Animais , Apoptose , Caspase 9/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Insetos , Modelos Biológicos , Nucleotídeos/química
20.
J Muscle Res Cell Motil ; 27(2): 115-23, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16450056

RESUMO

The myosin cross-bridge has two essential properties: to undergo the "power stroke" and to bind and release from actin - both under control of ATP binding and hydrolysis. In the absence of ATP the cross-bridge binds to actin with high affinity: the binding of ATP causes rapid release of the cross-bridge from actin. The actin binding-site is split by a deep cleft that closes on strong binding to actin. The cleft is straddled by a short polypeptide known as the "strut". In the following we summarise the structural basis of the power stroke and the control of actin affinity and then present data on the effects on actin affinity of replacing the strut by a flexible linker.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Mutação , Miosina Tipo II/metabolismo , Actinas/genética , Animais , Humanos , Miosina Tipo II/genética , Estrutura Quaternária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...