Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(9)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083477

RESUMO

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation-a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2 . 6 ∘ C and 0.22 ± 0 . 59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.

2.
J Photochem Photobiol B ; 87(1): 1-8, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17227712

RESUMO

Measurements and model calculations have been performed to study the effect of high surface albedo on erythemally effective UV irradiance. A central part of the investigation has been a one week measurement campaign at Salar de Uyuni in the Southern part of the Bolivian Altiplano. The Salar de Uyuni, the largest salt lake of the world, is characterized by largely homogeneous surface conditions during most of the year. Albedo measurements performed by an UV radiometer result in a reflectivity for erythemally effective radiation of 0.69+/-0.02. The measurements show hardly any dependency on solar elevation, indicating the homogeneity of the surface and nearly isotropic reflection properties of the Salar. The effects of the high albedo surface on the erythemally effective irradiance, i.e. the UV index (UVI), has been experimentally determined by simultaneous measurements of several UV radiometers located at different sites around and on the Salar. In this context a method for the minimization of systematic deviations between the individual detectors used for the investigation is presented. It ensures the intercomparability of the performed UV measurements within +/-2% which is a distinct improvement compared to the typical absolute accuracy of UV irradiance measurements in the order of +/-5%. For solar elevations around 50 degrees the UVI measured close to the center of the Salar is typically enhanced by 20% compared to the values determined outside. Towards lower solar elevations this increase becomes slightly weaker. The measurements agree well with both, own corresponding 1D and previously published 3D radiative transfer calculations from literature.


Assuntos
Eritema/diagnóstico por imagem , Fótons , Proteção Radiológica , Raios Ultravioleta , Bolívia , Humanos , Cintilografia , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...