Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chemistry ; 29(66): e202302618, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37728424

RESUMO

Group I alkoxides are highly active precatalysts in the heterodehydrocoupling of silanes and amines to afford aminosilane products. The broadly soluble and commercially available KOt Amyl was utilized as the benchmark precatalyst for this transformation. Challenging substrates such as anilines were found to readily couple primary, secondary, and tertiary silanes in high conversions (>90 %) after only 2 h at 40 °C. Traditionally challenging silanes such as Ph3 SiH were also easily coupled to simple primary and secondary amines under mild conditions, with reactivity that rivals many rare earth and transition-metal catalysts for this transformation. Preliminary evidence suggests the formation of hypercoordinated intermediates, but radicals were detected under catalytic conditions, indicating a mechanism that is rare for Si-N bond formation.

2.
Dalton Trans ; 52(38): 13497-13506, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37605890

RESUMO

A family of commercially available organolithium compounds were found to effectively catalyze the heterodehydrocoupling of silanes and amines under ambient conditions. Ubiquitous nBuLi (1) was utilized as the benchmark catalyst, where an array of primary, secondary, and tertiary arylsilanes were coupled to electron-donating amines, affording aminosilanes in high conversions with short reaction times. Preliminary mechanistic analysis is consistent with a nucleophilic-type system that involves the formation of a hypervalent silicon intermediate. This work underscores the accessibility of Si-N heterodehydrocoupling, with organolithium reagents emerging as some of the most straightforward and cost-effective precatalysts for this transformation.

3.
JAMA Netw Open ; 6(4): e238795, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071421

RESUMO

Importance: Goal-concordant care is an ongoing challenge in hospital settings. Identification of high mortality risk within 30 days may call attention to the need to have serious illness conversations, including the documentation of patient goals of care. Objective: To examine goals of care discussions (GOCDs) in a community hospital setting with patients identified as having a high risk of mortality by a machine learning mortality prediction algorithm. Design, Setting, and Participants: This cohort study took place at community hospitals within 1 health care system. Participants included adult patients with a high risk of 30-day mortality who were admitted to 1 of 4 hospitals between January 2 and July 15, 2021. Patient encounters of inpatients in the intervention hospital where physicians were notified of the computed high risk mortality score were compared with patient encounters of inpatients in 3 community hospitals without the intervention (ie, matched control). Intervention: Physicians of patients with a high risk of mortality within 30 days received notification and were encouraged to arrange for GOCDs. Main Outcomes and Measures: The primary outcome was the percentage change of documented GOCDs prior to discharge. Propensity-score matching was completed on a preintervention and postintervention period using age, sex, race, COVID-19 status, and machine learning-predicted mortality risk scores. A difference-in-difference analysis validated the results. Results: Overall, 537 patients were included in this study with 201 in the preintervention period (94 in the intervention group; 104 in the control group) and 336 patients in the postintervention period. The intervention and control groups included 168 patients per group and were well-balanced in age (mean [SD], 79.3 [9.60] vs 79.6 [9.21] years; standardized mean difference [SMD], 0.03), sex (female, 85 [51%] vs 85 [51%]; SMD, 0), race (White patients, 145 [86%] vs 144 [86%]; SMD 0.006), and Charlson comorbidities (median [range], 8.00 [2.00-15.0] vs 9.00 [2.00 to 19.0]; SMD, 0.34). Patients in the intervention group from preintervention to postintervention period were associated with being 5 times more likely to have documented GOCDs (OR, 5.11 [95% CI, 1.93 to 13.42]; P = .001) by discharge compared with matched controls, and GOCD occurred significantly earlier in the hospitalization in the intervention patients as compared with matched controls (median, 4 [95% CI, 3 to 6] days vs 16 [95% CI, 15 to not applicable] days; P < .001). Similar findings were observed for Black patient and White patient subgroups. Conclusions and Relevance: In this cohort study, patients whose physicians had knowledge of high-risk predictions from machine learning mortality algorithms were associated with being 5 times more likely to have documented GOCDs than matched controls. Additional external validation is needed to determine if similar interventions would be helpful at other institutions.


Assuntos
COVID-19 , Adulto , Humanos , Feminino , Criança , Estudos de Coortes , Hospitalização , Hospitais Comunitários , Aprendizado de Máquina
4.
Chem Commun (Camb) ; 59(10): 1258-1273, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36648191

RESUMO

An examination of several catalytic reactions among the group 15 elements is presented. The connections between the chemistry of the pnictogens can sometimes be challenging, but aspects of metal-pnictogen reactivity are the key. The connecting reactivity comes from metal-catalyzed transformations such as dehydrocoupling and hydrofunctionalization. Pivotal mechanistic insights from E-N heterodehydrocoupling have informed the development of highly active catalysts for these reactions. Metal-amido nucleophilicity is often at the core of this reactivity, which diverges from phosphine and arsine dehydrocoupling. Nucleophilicity connects to the earliest understanding of hydrophosphination catalysis, but more recent catalysts are leveraging enhanced insertion activity through photolysis. This photocatalysis extends to hydroarsination, which may also have more metal-arsenido nucleophilicity than anticipated. However, metal-catalyzed arsinidene chemistry foreshadowed related phosphinidene chemistry by years. This examination shows the potential for greater influence of individual discoveries and understanding to leverage new advances between these elements, and it also suggests that the chemistry of heavier elements may have more influence on what is possible with lighter elements.

5.
Adv Healthc Mater ; 11(18): e2200745, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35734914

RESUMO

Next generation textile-based wearable sensing systems will require flexibility and strength to maintain capabilities over a wide range of deformations. However, current material sets used for textile-based skin contacting electrodes lack these key properties, which hinder applications such as electrophysiological sensing. In this work, a facile spray coating approach to integrate liquid metal nanoparticle systems into textile form factors for conformal, flexible, and robust electrodes is presented. The liquid metal system employs functionalized liquid metal nanoparticles that provide a simple "peel-off to activate" means of imparting conductivity. The spray coating approach combined with the functionalized liquid metal system enables the creation of long-term reusable textile-integrated liquid metal electrodes (TILEs). Although the TILEs are dry electrodes by nature, they show equal skin-electrode impedances and sensing capabilities with improved wearability compared to commercial wet electrodes. Biocompatibility of TILEs in an in vivo skin environment is demonstrated, while providing improved sensing performance compared to previously reported textile-based dry electrodes. The "spray on dry-behave like wet" characteristics of TILEs opens opportunities for textile-based wearable health monitoring, haptics, and augmented/virtual reality applications that require the use of flexible and conformable dry electrodes.


Assuntos
Metais , Têxteis , Condutividade Elétrica , Impedância Elétrica , Eletrodos
6.
J Phys Condens Matter ; 34(26)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35390781

RESUMO

Complex band structure (CBS) emerges when translational symmetry is broken and material states with complex wavevectors become admissible. The resulting complex bands continuously connect conventional bands and their shapes are directly related to measurable physical quantities. To date, interpretations of complex bands usually assume they are semielliptical because this is the shape produced by the Su-Schrieffer-Heeger (SSH) model. However, numerous studies have reported CBSs with distinctly non-semielliptical shapes, including loops (essentially deformed, asymmetric semiellipses), spikes, and vertical lines. The primary goal of this work is to explore the phenomenology of these shapes such that deeper physical insight can be obtained from a qualitative inspection of a material's CBS. By using several variations on the SSH model, we find that (i) vertical lines are unphysical numerical artifacts, (ii) spikes indicate perfectly evanescent states in the material that couple adjacent layers but do not transfer amplitude, and (iii) asymmetric loops result from hybridization. Secondarily, we also develop a strategy for eliminating any unphysical vertical lines from calculations, thereby improving computational techniques for CBS.

7.
Chemistry ; 27(10): 3251-3261, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33283902

RESUMO

Silicon-nitrogen bond formation is an important subfield in main group chemistry, and catalysis is an attractive route for efficient, selective formation of these bonds. Indeed, heterodehydrocoupling and N-silylation offer facile methods for the synthesis of small molecules through the coupling of primary, secondary, and tertiary silanes with N-containing substrates such as amines, carbazoles, indoles, and pyrroles. However, the reactivity of these catalytic systems is far from uniform, and critical issues are often encountered with product selectivity, conversions, substrate scope, catalyst activation, and in some instances, competing side reactions. Herein, a catalogue of catalysts and their reactivity for Si-N heterodehydrocoupling and N-silylation are reported.

8.
Dalton Trans ; 49(9): 2972-2978, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32073589

RESUMO

Silicon-oxygen and silicon-nitrogen heterodehydrocoupling catalyzed by the commercially available cyclopentadienyl dicarbonyl iron dimer [CpFe(CO)2]2 (1) under photochemical conditions is reported. Reactions between alcohols and PhSiH3 with catalytic 1 under visible-light irradiation produced silyl ethers quantitively. Reactions between either secondary or tertiary silanes and alcohols also produced silyl ethers, however, these reactions were marked by their longer reaction times and lower conversions. Reactions of either primary or secondary amines and silanes with catalytic 1 demonstrated mixed efficiency, featuring conversions of 20-100%. Mechanistic study indicates that an iron silyl compound is unimportant in the bond-formation step and argues for either a nucleophilic alkoxide or amide intermediate. Most important, mechanistic study reveals that the most immediate hurdle in the catalysis is the poor activation of 1, demonstrating the necessity to fully activate the catalyst to realize the potential of iron in this reactivity.

9.
J Chem Phys ; 147(22): 224104, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246062

RESUMO

It is natural to characterize materials in transport junctions by their conductance length dependence, ß. Theoretical estimations of ß are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the ß value derived from total Landauer transmission can be related to the ß value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.

10.
J Phys Condens Matter ; 29(5): 053001, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27911882

RESUMO

Complex band structure generalizes conventional band structure by also considering wavevectors with complex components. In this way, complex band structure describes both the bulk-propagating states from conventional band structure and the evanescent states that grow or decay from one unit cell to the next. Even though these latter states are excluded by translational symmetry, they become important when translational symmetry is broken via, for example, a surface or impurity. Many studies over the last 80 years have directly or indirectly developed complex band structure for an impressive range of applications, but very few discuss its fundamentals or compare its various results. In this work we build upon these previous efforts to expose the physical foundation of complex band structure, which mathematically implies its existence. We find that a material's static and dynamic electronic structure are both completely described by complex band structure. Furthermore, we show that complex band structure reflects the minimal, intrinsic information contained in the material's Hamiltonian. These realizations then provide a context for comparing and unifying the different formulations and applications of complex band structure that have been reported over the years. Ultimately, this discussion introduces the idea of examining the amount of information contained in a material's Hamiltonian so that we can find and exploit the minimal information necessary for understanding a material's properties.

11.
Nanotechnology ; 27(42): 425203, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27623441

RESUMO

When investigating the electronic response properties of molecules, experiments often measure conductance whereas computation predicts the transmission probability. Although Landauer-Büttiker theory usually relates the two, comparison between experiment and computation remains difficult because experimental data (specifically those from break junctions) are statistical and computational results are deterministic. In this work we develop tools to quantitatively estimate-with error bars-the shape of the Landauer-Büttiker transmission function directly from experimental statistics on conductance and thermopower (if the latter is also available). We subsequently apply these tools to existing data, demonstrating a rigorous statistical comparison between experimental and computational results on molecular electron transport.

12.
Case Rep Orthop ; 2015: 395875, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509091

RESUMO

Vertebral kyphoplasty is a procedure used for the treatment of compression fractures. While early randomized-controlled trials were equivocal regarding its benefits, more recent RCTs have shown favorable results for kyphoplasty with regard to pain relief, functional recovery, and health-care related quality of life compared to control patients. Risks of kyphoplasty include but are not limited to cement extrusion, infection, hematoma, and vertebral body fracture of adjacent levels. We describe a case of a 66-year-old male attorney who underwent eleven kyphoplasties in an approximately one-year period, the majority of which were for fractures of vertebrae adjacent to those previously treated with kyphoplasty. Information on treatment was gathered from the patient's hospital chart and outpatient office notes. Following the last of the eleven kyphoplasties (two at T8, one each at all vertebrae from T9 to L5), the patient was able to function without pain and return to work. His physiologic thoracic kyphosis of 40 degrees prior to the first procedure was maintained, as were his lung and abdominal volumes. We conclude that kyphoplasty is an appropriate procedure for the treatment of vertebral compression fractures and can be used repeatedly to address fractures of levels adjacent to a previous kyphoplasty.

13.
ACS Nano ; 9(7): 7704-13, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26168212

RESUMO

We develop theoretical and computational tools for extracting quantitative molecular information from experimental conductance histograms for electron transport through single-molecule break junctions. These experimental setups always measure a combination of molecular conductance and direct electrode-electrode tunneling; our derivations explicitly incorporate the effects of such background tunneling. Validation of our models to simulated data shows that background tunneling is crucial for quantitative analyses (even in cases where it appears to be qualitatively negligible), and comparison to experimental data is favorable. Finally, we generalize these ideas to the case of molecules with a destructive interference feature and discuss potential signatures for interference in a conductance histogram.

14.
J Chem Phys ; 141(18): 181103, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399124

RESUMO

Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.

15.
J Chem Phys ; 140(17): 177104, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811672

RESUMO

The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.

16.
J Chem Phys ; 139(11): 114104, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24070276

RESUMO

We revisit the derivation of electron transport theories with a focus on the projection operators chosen to partition the system. The prevailing choice of assigning each computational basis function to a region causes two problems. First, this choice generally results in oblique projection operators, which are non-Hermitian and violate implicit assumptions in the derivation. Second, these operators are defined with the physically insignificant basis set and, as such, preclude a well-defined basis set limit. We thus advocate for the selection of physically motivated, orthogonal projection operators (which are Hermitian) and present an operator-based derivation of electron transport theories. Unlike the conventional, matrix-based approaches, this derivation requires no knowledge of the computational basis set. In this process, we also find that common transport formalisms for nonorthogonal basis sets improperly decouple the exterior regions, leading to a short circuit through the system. We finally discuss the implications of these results for first-principles calculations of electron transport.

17.
J Chem Phys ; 138(8): 084707, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23464172

RESUMO

We computationally investigate the decay of surface effects in one-, two-, and three-dimensional materials using two-band tight-binding models. These general models facilitate a direct comparison between materials of differing dimensionality, which reveals that material dimensionality (not material-specific chemistry/physics) is the primary factor controlling the decay of surface effects. Our results corroborate more sophisticated, material-specific studies, finding that surface effects decay after ∼10, ∼25, and ≳ 100 layers in three-dimensional, two-dimensional, and one-dimensional materials, respectively. Physically, higher-dimensional materials screen surface effects more efficiently, as theoretically described by integration over each layer's Brillouin zone. Finally, we discuss several implications of these results.

18.
Nano Lett ; 12(5): 2243-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22494042

RESUMO

We present a computational investigation into the line shapes of peaks in conductance histograms, finding that they possess high information content. In particular, the histogram peak associated with conduction through a single molecule elucidates the electron transport mechanism and is generally well-described by beta distributions. A statistical analysis of the peak corresponding to conduction through two molecules reveals the presence of cooperative effects between the molecules and also provides insight into the underlying conduction channels. This work describes tools for extracting additional interpretations from experimental statistical data, helping us better understand electron transport processes.

19.
ACS Nano ; 6(1): 557-65, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22133271

RESUMO

A study of the adsorption equilibrium of solution-phase CdS quantum dots (QDs) and acid-derivatized viologen ligands (N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate, V(2+)) reveals that the structure of the surfaces of the QDs depends on their concentration. This adsorption equilibrium is monitored through quenching of the photoluminescence of the QDs by V(2+) upon photoinduced electron transfer. When modeled with a simple Langmuir isotherm, the equilibrium constant for QD-V(2+) adsorption, K(a), increases from 6.7 × 10(5) to 8.6 × 10(6) M(-1) upon decreasing the absolute concentration of the QDs from 1.4 × 10(-6) to 5.1 × 10(-8) M. The apparent increase in K(a) upon dilution results from an increase in the mean number of available adsorption sites per QD from 1.1 (for [QD] = 1.4 × 10(-6) M) to 37 (for [QD] = 5.1 × 10(-8) M) through desorption of native ligands from the surfaces of the QDs and through disaggregation of soluble QD clusters. A new model based on the Langmuir isotherm that treats both the number of adsorbed ligands per QD and the number of available binding sites per QD as binomially distributed quantities is described. This model yields a concentration-independent value for K(a) of 8.7 × 10(5) M(-1) for the QD-V(2+) system and provides a convenient means for quantitative analysis of QD-ligand adsorption in the presence of competing surface processes.


Assuntos
Compostos de Cádmio/química , Coloides/química , Modelos Químicos , Pontos Quânticos , Compostos de Selênio/química , Absorção , Simulação por Computador , Ligantes , Propriedades de Superfície
20.
Nano Lett ; 11(11): 4693-6, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22008014

RESUMO

We use a one-electron, tight-binding model of a molecular adlayer sandwiched between two metal electrodes to explore how cooperative effects between molecular wires influence electron transport through the adlayer. When compared to an isolated molecular wire, an adlayer exhibits cooperative effects that generally enhance conduction away from an isolated wire's resonance and diminish conductance near such a resonance. We also find that the interwire distance (related to the adlayer density) is a key quantity. Substrate-mediated coupling induces most of the cooperative effects in dense adlayers, whereas direct, interwire coupling (if present) dominates in sparser adlayers. In this manner, cooperative effects through dense adlayers cannot be removed, suggesting an optimal adlayer density for maximizing conduction.


Assuntos
Condutividade Elétrica , Transporte de Elétrons , Modelos Químicos , Nanoestruturas/química , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...