Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 3(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656146

RESUMO

This letter reports on the integration of eight ultrasonic transducers into a build substrate for individual in-process monitoring of eight parts fabricated using powder bed fusion additive manufacturing. Ultrasound is shown to be able to sense poor fusion of parts to the substrate and also sensitivity to porosity. This technique demonstrates the utility of ultrasound as one of a few techniques able to interrogate the volume of additively manufactured parts during the process. Additionally, the ability to measure several parts during a single build can be used for efficient process parameter development studies, as the ultrasonic measurements can offer rapid information about part quality and integrity.

2.
3D Print Addit Manuf ; 10(3): 406-419, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37346187

RESUMO

Metal additive manufacturing (AM) is known to produce internal defects that can impact performance. As the technology becomes more mainstream, there is a growing need to establish nondestructive inspection technologies that can assess and quantify build quality with high confidence. This article presents a complete, three-dimensional (3D) solution for automated defect recognition in AM parts using X-ray computed tomography (CT) scans. The algorithm uses a machine perception framework to automatically separate visually salient regions, that is, anomalous voxels, from the CT background. Compared with supervised approaches, the proposed concept relies solely on visual cues in 3D similar to those used by human operators in two-dimensional (2D) assuming no a priori information about defect appearance, size, and/or shape. To ingest any arbitrary part geometry, a binary mask is generated using statistical measures that separate lighter, material voxels from darker, background voxels. Therefore, no additional part or scan information, such as CAD files, STL models, or laser scan vector data, is needed. Visual saliency is established using multiscale, symmetric, and separable 3D convolution kernels. Separability of the convolution kernels is paramount when processing CT scans with potentially billions of voxels because it allows for parallel processing and thus faster execution of the convolution operation in single dimensions. Based on the CT scan resolution, kernel sizes may be adjusted to identify defects of different sizes. All adjacent anomalous voxels are subsequently merged to form defect clusters, which in turn reveals additional information regarding defect size, morphology, and orientation to the user, information that may be linked to mechanical properties, such as fatigue response. The algorithm was implemented in MATLAB™ using hardware acceleration, that is, graphics processing unit support, and tested on CT scans of AM components available at the Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D) at Penn State's Applied Research Laboratory. Initial results show adequate processing times of just a few minutes and very low false-positive rates, especially when addressing highly salient and larger defects. All developed analytic tools can be simplified to accommodate 2D images.

3.
Materials (Basel) ; 16(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770141

RESUMO

The objective of this work is to compare the microstructure and microhardness properties of IN718 deposited by both powder- and wire-fed laser-directed energy deposition (L-DED) processes. The powder-fed L-DED is carried out on an Optomec LENS® system while the wire-fed L-DED is performed in an in-house custom-built system. Several single-layer single-track specimens are fabricated using different combinations of process parameters to down-select the optimal process parameters for both systems. The finalized parameters are, thereafter, used to build thin-wall specimens having identical designs. The specimens are characterized using optical and electron microscopy as well as microhardness measurements. The results demonstrate that the powder-fed specimen, built using optimal process parameters, does not exhibit any distortion. On the contrary, the wire-fed specimen, built with optimal process parameters, show lesser porosity. Differences in elemental segregation are also detected in the two specimens. For example, nitrides and carbides are observed in the wire-fed specimen but not in the powder-fed specimen. The microhardness measurements reveal the powder-fed specimen has higher microhardness values compared to the wire-fed specimen. These results can be used to fabricate parts with sequential powder and wire deposition to achieve biomimetic structures of varying microstructure and microhardness properties.

4.
Materials (Basel) ; 14(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440854

RESUMO

Control of the geometric accuracy of a metal deposit is critical in the repair and fabrication of complex components through Directed Energy Deposition (DED). This paper developed and experimentally evaluated a model-based feedforward control of laser power with the objective of achieving the targeted part height in DED. Specifically, based on the dynamic model of melt-pool geometry derived from our prior work, a nonlinear inverse-dynamics controller was derived in a hatch-by-hatch, layer-by-layer manner to modulate the laser power such that the melt-pool height was regulated during the simulated build process. Then, the laser power trajectory from the simulated closed-loop control under the nonlinear inverse-dynamics controller was implemented as a feedforward control in an Optomec Laser-Engineered Net Shape (LENS) MR-7 system. This paper considered the deposition of L-shaped structures of Ti-6AL-4V as a case study to illustrate the proposed model-based controller. Experimental validation showed that by applying the proposed model-based feed-forward control for laser power, the resulting build had 24-42% reduction in the average build height error with respect to the target build height compared to applying a constant laser power through the entire build or applying a hatch-dependent laser power strategy, for which the laser power values were obtained from experimental trial and error.

5.
Addit Manuf ; 392021.
Artigo em Inglês | MEDLINE | ID: mdl-35527803

RESUMO

Powder bed fusion (PBF) additive manufacturing (AM) provides a great level of flexibility in the design-driven build of metal products. However, the more complex the design, the more difficult it becomes to control the quality of AM builds. The quality challenge persistently hampers the widespread application of AM technology. Advanced imaging (e.g., X-ray computed tomography scans and high-resolution optical images) has been increasingly explored to enhance the visibility of information and improve the AM quality control. Realizing the full potential of imaging data depends on the advent of information processing methodologies for the analysis of design-quality interactions. This paper presents a design of AM experiment to investigate how design parameters (e.g., build orientation, thin-wall width, thin-wall height, and contour space) interact with quality characteristics in thin-wall builds. Note that the build orientation refers to the position of thin-walls in relation to the recoating direction on the plate, and the contour space indicates the width between rectangle hatches. First, we develop a novel generalized recurrence network (GRN) to represent the AM spatial image data. Then, GRN quantifiers, namely degree, betweenness, pagerank, closeness, and eigenvector centralities, are extracted to characterize the quality of layerwise builds. Further, we establish a regression model to predict how the design complexity impacts GRN behaviors in each layer of thin-wall builds. Experimental results show that network features are sensitive to build orientations, width, height, and contour space under the significant level α = 0.05. Thin-walls with the width bigger than 0.1 mm printed under orientation 0° are found to yield better quality compared to 60° and 90°. Also, thin-walls build with orientation 60° are more sensitive to the changes in contour space compare to the other two orientations. As a result, the orientation 60° should be avoided while printing thin-wall structures. The proposed design-quality analysis shows great potential to optimize engineering design and enhance the quality of PBF-AM builds.

6.
Sci Rep ; 9(1): 5038, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911016

RESUMO

Ejecta with a size much larger than the mean particle size of feedstock powder have been observed in powder bed fusion additive manufacturing, both during post-process sieving and embedded within built components. However, their origin has not been adequately explained. Here, we test a hypothesis on the origin of large (much larger than the mass-median-diameter of feedstock powder) ejecta-that, in part, they result from stochastic, inelastic collisions of ejecta and coalescence of partially-sintered agglomerates. The hypothesis is tested using direct observation of ejecta behavior, via high-speed imaging, to identify interactions between ejecta and consequences on melt pool formation. We show that stochastic collisions occur both between particles which are nearly-simultaneously expelled from the laser interaction zone and between particles ejected from distant locations. Ejecta are also shown to perturb melt pool geometry, which is argued to be a potential cause of lack-of-fusion flaws.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...