Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Med Sci ; 9(4): 1848-1860, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335585

RESUMO

BACKGROUND: Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE: This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS: We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS: We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS: We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.


Assuntos
Doenças dos Animais , Abelhas , Animais , Nosema , Praguicidas , Varroidae
2.
Int J Parasitol Parasites Wildl ; 21: 43-46, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37124671

RESUMO

Historically, the neogregarine Apicystis bombi was isolated almost exclusively from bumble bees (Bombus spp.) where it disrupts adipose tissue, increasing hosts' mortality rates. Records in solitary bees are scarce worldwide. To check for its presence in carpenter bees (genus Xylocopa), campaigns were performed in Argentina capturing 154 individuals of five species (X. augusti, X. splendidula, X. atamisquensis, X. frontalis, X. nigrocincta). The presence of A. bombi was detected by molecular means in X. augusti, X. atamisquensis, and X. nigrocincta in four of the nine provinces screened. The pathogenesis and eventual impact that A. bombi may cause in individuals or populations of Xylocopa species remain unknown. The presence of A. bombi in northern Argentina would be contradictory to the hypothesis that its occurrence is the exclusive result of its introduction to South America through invasive, infected exotic bumble bees.

3.
Environ Microbiome ; 18(1): 38, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098635

RESUMO

Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.

4.
PLoS One ; 16(4): e0249842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901226

RESUMO

Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.


Assuntos
Abelhas/parasitologia , Parasitos/patogenicidade , Vírus de RNA/patogenicidade , Animais , Abelhas/microbiologia , Abelhas/virologia , Biodiversidade , Microsporídios/patogenicidade , Ácaros/patogenicidade , Nematoides/patogenicidade , Uruguai
5.
Parasitol Int ; 81: 102244, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33217549

RESUMO

Lotmaria passim (Kinetoplastea) is considered the most prevalent as well as the most virulent trypanosomatid associated to the European honey bee Apis mellifera. We used qPCR to screen for the presence of this parasite in 57 samples from ten Argentinian provinces, and were able to detect its presence throughout most of the country with 41% of the samples testing positive. In a retrospective analysis, we detected L. passim in 73% of honey bee samples from 2006 showing that this flagellate has been widely present in Argentina for at least ~15 years. Additionally, three primer sets for L. passim detection were compared, with the pair that produced smallest PCR product having the best detection capability. Finally, we also found L. passim DNA in 100% (n = 6) of samples of the mite Varroa destructor. The role of this ectoparasite in the lifecycle of Lotmaria, if any, remains unrevealed.


Assuntos
Abelhas/parasitologia , Trypanosomatina/isolamento & purificação , Animais , Argentina
6.
Arch Virol ; 165(9): 2053-2056, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556548

RESUMO

Chronic bee paralysis virus (CBPV) is a positive single-stranded RNA virus that exhibits a worldwide distribution. Although the effects of this virus on honeybees' health are well known, its presence in other bee species has not been fully studied. In this work, CBPV was detected in several native bees from Argentina, including Bombus pauloensis, Halictillus amplilobus, Peponapis fervens, and members of the genus Xylocopa. Here, we report for the first time the presence of CBPV in native bees from South America.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de RNA/isolamento & purificação , Animais , Argentina , Abelhas/classificação , Vírus de Insetos/classificação , Vírus de Insetos/genética , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...