Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604516

RESUMO

The degradation of three anti-cancer drugs (ADs), Capecitabine (CAP), Bicalutamide (BIC) and Irinotecan (IRI), in ultrapure water by ozonation and UV-irradiation was tested in a bench-scale reactor and AD concentrations were measured through ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A low-pressure mercury UV (LP-UV) lamp was used and degradation by UV (λ = 254 nm) followed pseudo-first order kinetics. Incident radiation in the reactor was measured via chemical actinometry using uridine. The quantum yields (φ) for the degradation of CAP, BIC and IRI were 0.012, 0.0020 and 0.0045 mol Einstein-1, respectively. Ozone experiments with CAP and IRI were conducted by adding ozone stock solution to the reactor either with or without addition of tert-butanol (t-BuOH) as radical quencher. Using this experimental arrangement, no degradation of BIC was observed, so a semi-batch setup was employed for the ozone degradation experiments of BIC. Without t-BuOH, apparent second order reaction rate constants for the reaction of the ADs with molecular ozone were determined to be 3.5 ± 0.8 ∙ 103 L mol-1 s-1 (CAP), 7.9 ± 2.1 ∙ 10-1 L mol-1 s-1 (BIC) and 1.0 ± 0.3 ∙ 103 L mol-1 s-1 (IRI). When OH-radicals (∙OH) were quenched, rate constants were virtually the same for CAP and IRI. For BIC, a significantly lower constant of 1.0 ± 0.5 ∙ 10-1 L mol-1 s-1 was determined. Of the tested substances, BIC was the most recalcitrant, with the slowest degradation during both ozonation and UV-irradiation. The extent of mineralization was also determined for both processes. UV irradiation was able to fully degrade up to 80% of DOC, ozonation up to 30%. Toxicity tests with Daphnia magna (D. magna) did not find toxicity for fully degraded solutions of the three ADs at environmentally relevant concentrations.


Assuntos
Anilidas , Antineoplásicos , Capecitabina , Irinotecano , Nitrilas , Ozônio , Compostos de Tosil , Raios Ultravioleta , Poluentes Químicos da Água , Ozônio/química , Nitrilas/química , Poluentes Químicos da Água/química , Irinotecano/química , Anilidas/química , Capecitabina/química , Compostos de Tosil/química , Antineoplásicos/química , Cinética , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão
2.
Mar Environ Res ; 196: 106410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422819

RESUMO

An important number of studies have evaluated the presence of microplastics, particles with a size below 5 mm, in aquatic organisms. Studies have shown that these fragments are widely present in the marine environment, but research on the estuarine ecosystem is still scarce. In this study, two different approaches were used to evaluate the presence and ingestion of plastic particles in the ragworm Hediste diversicolor: a field study for the environmental assessment and a laboratory experiment in controlled condition. For the environmental evaluation, ingestion of microplastics was evaluated in the ragworm H. diversicolor sampled from the mudflats of the Seine estuary (France) during March and June 2017 and 2018, on two locations: S1 and S2, both characterized by high anthropogenic pressures, and for S2 a more influential hydrodynamic component. Ingestion of microplastics was measured in ragworms tissues and in gut content (sediment) after depuration. The number of particles as well as their size, shape and color were reported and compared between sampling period and locations. Results showed the presence of a low number of particles in both worms and gut content. In gut content, 45.6% and 87.58% of samples from site S1 and S2 respectively contained plastic like particles. In worms, 41.7% (S1) and 75.8% (S2) of analysed samples contained plastic like items. The lowest mean number of particles was 0.21 ± 0.31 (S1 in June 2017) in worms' tissues, but 0.80 ± 0.90 (S1 in June 2017) in the gut content and the highest was 1.47 ± 1.41 (S2 in April 2017) while the highest number was 2.55 ± 2.06 (S2 in June 2017) in worms and gut content respectively. The majority of suspected microplastics observed were fibers (66%) and fragments (27%), but films (3.7%) foam (2.1%), and granules (0.2%) were also identified. In addition, the most polymer type observed by Raman spectroscopy was polypropylene. Furthermore, a preliminary study of the ingestion and egestion of fluorescent polyethylene (PE) microbeads in the digestive tract of ragworms was conducted after exposure through water, during 1h at 1.2 × 106 MP/mL. Results showed a rapid turnover of PE microbeads throughout the digestive tract of worms especially after exposure through water. This study revealed that microplastics are ingested by the ragworm H. diversicolor but do not seem to bioaccumulate. More research is needed to measure potential chronic effects of microplastics on physiological parameters of H. diversicolor and potential trophic transfer of microplastics.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Plásticos , Poliquetos/fisiologia , Polietileno , Água , Poluentes Químicos da Água/análise
3.
Mar Environ Res ; 191: 106159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683560

RESUMO

The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 µg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.


Assuntos
Poliquetos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Espécies Sentinelas/metabolismo , Antioxidantes , Plastificantes/toxicidade , Plastificantes/metabolismo , Plásticos/toxicidade , Rios , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Biomarcadores/metabolismo , Poliquetos/fisiologia , Poluentes Químicos da Água/metabolismo
4.
Ecotoxicology ; 30(3): 421-430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33580466

RESUMO

Plastic particles have been described in aquatic ecosystems worldwide. An increasing number of studies have tried to evaluate the toxic impacts of microplastics (1-5000 µm) but also nanoplastics (<1 µm) in marine and freshwater organisms. However, the wide variety of plastic particles characteristics such as various sizes, shapes, functionalization or types of polymer, makes it difficult to evaluate their impact with regular ecotoxicity testing. In this context, cell culture, mainly used in human toxicology, could be a promising tool to evaluate micro- and nanoplastics toxicity with a wide diversity of conditions allowing to generate a large set of data. This review presents the current research on micro and nanoplastics using cell culture of marine and freshwater organisms, describes the limitations of cell culture tool and defines whether this tool can be considered as a relevant alternative strategy for ecotoxic evaluation of micro and nanoplastics especially for future regulatory needs. Articles using specifically cell culture tool from aquatic organisms such as fish or bivalves were identified. The majority evaluated the toxicity of polystyrene nanobeads on immune parameters, oxidative stress or DNA damage in fish cells. Although most of the papers characterized nanoplastic particles into the cell culture media, the relevance of testing conditions is not always clear. The development of cell culture can offer many opportunities for the evaluation of plastic particles' cellular impacts, but more research is needed to develop relevant culture models, on various aquatic organisms, and with consideration of abiotic parameters especially composition of cell culture media for nanoplastic evaluation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Técnicas de Cultura de Células , Ecossistema , Humanos , Plásticos/toxicidade , Poliestirenos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Pollut Res Int ; 27(4): 3574-3583, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30353435

RESUMO

The presence of plastic debris < 5 mm called microplastics (MPs) which results mainly from macroplastic's fragmentation has been reported in aquatic ecosystems. Several studies have shown that MPs are persistent and their accumulation was observed in various aquatic species. However, the majority of studies focused on marine species, and much less on continental and estuarine biota. The goal of the present study was to investigate the effects of a mixture of two types of MPs (polyethylene and polypropylene), frequently found in natural environments, towards the ragworm Hediste diversicolor to determine their accumulation in organisms exposed through the water phase or sediment. Two concentrations of exposure were selected for medium and heavily contaminated areas reported for water phase (10 and 100 µg/L) and sediment (10 and 50 mg of MPs/kg). To study the potential toxic effect of MPs, immune parameters were selected since they are involved in many defense mechanisms against xenobiotics or infectious agents. An average number of MP items/worm ranging from 0 to 2.5 and from 1 to 36 were identified in animals exposed to the lowest and the highest concentration of MPs through water exposure. In worms exposed through sediment, less than 1 MP/worm was found and a greater number of particles were identified in depurated sediment. For immunotoxic impact, MP exposure induced a decrease in coelomocytes viability, but no alteration of phagocytosis activity, phenoloxydase, and acid phosphatase was measured. This study brings new results on the potential accumulation and immunotoxicity of MPs for the ragworm H. diversicolor who plays a key role in the structure and functioning of estuarine ecosystem.


Assuntos
Exposição Ambiental/efeitos adversos , Poluição Ambiental/análise , Microplásticos/efeitos adversos , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Poluição Ambiental/efeitos adversos , Plásticos , Poliquetos/fisiologia
6.
Mar Pollut Bull ; 150: 110627, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31655301

RESUMO

The aim of the present study was to evaluate the presence and potential toxic effects of plastic fragments (<400 µm) of polyethylene and polypropylene on the Pacific oyster Crassostrea gigas. Oysters were exposed to environmentally relevant concentrations (0, 0.008, 10, 100 µg of particles/L) during 10 days, followed by a depuration period of 10 days in clean seawater. Effects of microplastics were evaluated on the clearance rate of organisms, tissue alteration, antioxidant defense, immune alteration and DNA damage. Detection and quantification of microplastics in oyster's tissues (digestive gland, gills and other tissues) and biodeposits using infrared microscopy were also conducted. Microplastics were detected in oyster's biodeposits following exposure to all tested concentrations: 0.003, 0.006 and 0.05 particles/mg of biodeposits in oysters exposed to 0.008, 10 and 100 µg of particles/L, respectively. No significant modulation of biological markers was measured in organisms exposed to microplastics in environmentally relevant conditions.


Assuntos
Crassostrea/fisiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Plásticos
7.
Environ Toxicol Pharmacol ; 62: 177-180, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30044999

RESUMO

Potential immunotoxicity and genotoxicity of as-produced and purified single walled carbon nanotubes (SWCNT, 500 µg L-¹) with or without cadmium (20 µg L-¹) was investigated in hemocytes of the freshwater mussel, Elliptio complanata. Our results showed a decrease in hemocyte viability after 3, and 8 days of exposure and an increase of hemocyte phagocytic efficiency for organisms exposed to Cd. No modification of the cyclo-oxygenase (COX) activity was measured. An increase in DNA damage was measured after 1 day of exposure to Cd and a potentiating effect of combined exposures was observed.


Assuntos
Cádmio/toxicidade , Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bivalves , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Hemócitos/efeitos dos fármacos , Hemócitos/fisiologia , Fagocitose/efeitos dos fármacos
8.
Environ Toxicol Chem ; 37(4): 1007-1013, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193218

RESUMO

The combined influence of oxygenation and salinity on agglomeration and/or aggregation kinetics of the silver (Ag) nanomaterial NM-300K was investigated, and the relationship between its physicochemical fate and toxicity toward an estuarine bivalve was established. The results showed that the presence of NaCl under certain oxygen conditions (8.5 ppm) promoted the formation of AgCl aggregates that could be linked to toxicity effects on aquatic organisms. Environ Toxicol Chem 2018;37:1007-1013. © 2017 SETAC.


Assuntos
Nanoestruturas/química , Oxigênio/química , Salinidade , Prata/química , Animais , Bivalves/metabolismo , Cinética , Nanopartículas Metálicas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Fatores de Tempo , Água/química , Poluentes Químicos da Água
9.
Aquat Toxicol ; 193: 72-85, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29049925

RESUMO

In recent years, the implication of genomics into ecotoxicological studies has been studied closely to allow a better understanding of organism's responses to environmental contaminants including engineering nanomaterials (ENMs). ENMs are increasingly produced for various applications including cosmetics, electronics, sports equipment, biomedicine and agriculture. Because of their small size, ENMs possess chemical or physical characteristics improved compared to the corresponding macro-sized material. As their application expend, the release of manufactured ENMs into the environment is likely to increase and concern over impacts for the aquatic ecosystem is growing. Several studies reported deleterious effect of ENMs to aquatic organisms, but there is little information about the molecular mechanisms of toxicity. The development of ecotoxicogenomic approaches will improve the characterization of cellular and molecular modes of action of ENMs to aquatic organisms and allow a better prediction of contaminants toxicity. This paper presents an overview of transciptomic/proteomic studies in freshwater and marine organisms exposed to ENMs. Overall, induction of gene expression in relations to defense mechanisms, immune responses, growth and reproduction were measured after ENMs exposures of organisms, but with different patterns depending on exposure duration and concentrations used. In addition, some studies reported a positive correlation between gene expression and cellular modifications, but not at the individual level.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Nanoestruturas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/metabolismo , Ecossistema , Ecotoxicologia , Meio Ambiente , Expressão Gênica/efeitos dos fármacos , Proteômica
10.
J Xenobiot ; 5(1): 5086, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-30701037

RESUMO

Carbon nanomaterials are present in various industrial applications and therefore their release into the environment including freshwater ecosystem is expected to increase. The aim of the present study was to investigate the influence of several parameters on the toxicity of single-walled carbon nanotubes (SWCNT) to the freshwater amphipod, Hyalella azteca. The effect of period of exposure, sediment presence and possible impurities released during SWCNT preparation on survival and/or growth of such organism was evaluated. We measured a reduction of survival at concentrations ranging from 10 to 40 mg/L after 96-h exposure, while no mortality was observed with the same concentrations and in the presence of artificial sediment after 14 days of exposure. It is possible that SWCNT are adsorbed on the organic matter from the artificial sediment leading to a decrease of SWCNT bioavailability. The survival and growth toxicity tests revealed a stronger effect at 28 days compared to the 14 days of exposure, and full mortality of organisms at 1000 mg/L for both exposure times. The presence of SWCNT in the gut of survived organisms was observed. The present study demonstrates that the interaction with sediment should be considered when carbon nanotubes toxicity through water exposure is investigated.

11.
Naturwissenschaften ; 100(10): 913-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23949248

RESUMO

Zelus annulosus is an assassin bug species mostly noted on Hirtella physophora, a myrmecophyte specifically associated with the ant Allomerus decemarticulatus known to build traps on host tree twigs to ambush insect preys. The Z. annulosus females lay egg clutches protected by a sticky substance. To avoid being trapped, the first three instars of nymphs remain grouped in a clutch beneath the leaves on which they hatched, yet from time to time, they climb onto the upper side to group ambush preys. Long-distance prey detection permits these bugs to capture flying or jumping insects that alight on their leaves. Like some other Zelus species, the sticky substance of the sundew setae on their forelegs aids in prey capture. Group ambushing permits early instars to capture insects that they then share or not depending on prey size and the hunger of the successful nymphs. Fourth and fifth instars, with greater needs, rather ambush solitarily on different host tree leaves, but attract siblings to share large preys. Communal feeding permits faster prey consumption, enabling small nymphs to return sooner to the shelter of their leaves. By improving the regularity of feeding for each nymph, it likely regulates nymphal development, synchronizing molting and subsequently limiting cannibalism.


Assuntos
Comportamento Predatório/fisiologia , Reduviidae/fisiologia , Comportamento Social , Animais , Tamanho Corporal , Insetos/metabolismo , Ninfa
12.
Aquat Toxicol ; 122-123: 1-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22717255

RESUMO

We tested the freshwater mudsnail Potamopyrgus antipodarum, which is a species that has already been used for endocrine-disrupting compounds (EDCs) to determine whether early life stages of aquatic organisms are sensitive to genotoxic chemicals. For this purpose, we first developed the alkaline comet assay on adults, embryos, and neonates. The comet assay protocol was validated on both embryonic cells exposed in vitro to hydrogen peroxide and adult snails in the reproducing stage exposed to methyl methane sulfonate. During the latter experiment, DNA strand breaks were investigated on both embryonic cells and on adult gill cells. The second part of this study investigated the stability of DNA strand breaks in adult reproducing snails and neonates exposed to cadmium (Cd) and bisphenol A for 8 days. Hydrogen peroxide-induced DNA strand breaks in vitro in isolated embryonic cells. Exposure of adult reproducing snails to methyl methane sulfonate for 24h induced DNA strand breaks in embryos. Bisphenol A induced a significant increase in the DNA strand-break level in whole embryonic cells and whole neonate cells. Cd was genotoxic for both embryos and neonates during the exposure time and also after 7 days of depuration, suggesting that Cd could inhibit DNA repair enzymes. These preliminary results on this original model have encouraged us to consider the impact of genotoxic environmental contaminants on the F1 generation.


Assuntos
Quebras de DNA/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos , Cádmio/toxicidade , Ensaio Cometa , Embrião não Mamífero/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Metanossulfonato de Metila/toxicidade , Fenóis/toxicidade , Caramujos/embriologia
13.
PLoS One ; 5(10)2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20957040

RESUMO

Tropical plants frequently live in association with ants that protect their foliage from defoliators. Among them, myrmecophytes have evolved mutualisms with a limited number of plant-ants that they shelter and feed, and, in return, benefit from some protection. Hirtella physophora (Chrysobalanaceae), for example, houses Allomerus decemarticulatus (Myrmicinae) that build gallery-shaped traps to catch large prey. In French Guiana, we frequently observed the assassin bug Zelus annulosus (Reduviidae, Harpactorinae) on the leaves of H. physophora. Here, we studied the distribution of Zelus annulosus among understory plants in the Guianese rainforest and found it only on pubescent plants, including H. Physophora, whether or not it was sheltering an A. decemarticulatus colony, but only rarely on other myrmecophytes. The relationship between Z. annulosus and its host plants is, then, also mutualistic, as the plant trichomes act as an enemy-free space protecting the nymphs from large predatory ants, while the nymphs protect their host-plants from herbivorous insects. Through their relationship with A. decemarticulatus colonies, Z. annulosus individuals are protected from army ants, while furnishing nothing in return. In those cases where H. physophora sheltered both an A. decemarticulatus colony and Z. annulosus nymphs, certain plant individuals repeatedly sheltered nymphs, indicating that female bugs may select not only pubescent plants but also particular H. physophora treelets having characteristics more favourable to the development of their progeny.


Assuntos
Formigas/fisiologia , Fenômenos Fisiológicos Vegetais , Comportamento Predatório , Reduviidae/fisiologia , Simbiose , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...