Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(12): 3695-3703, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965889

RESUMO

Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.


Assuntos
Proteínas de Escherichia coli , Microgéis , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Ácido Hialurônico/metabolismo , Polímeros/metabolismo , Escherichia coli/metabolismo , DNA/metabolismo
2.
Small Methods ; 7(12): e2300173, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350500

RESUMO

The bottom-up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self-organizing reaction-diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems. Employing two-photon lithography, microswimmer-like structures coated with tailored lipid bilayers are fabricated and demonstrate that Min proteins can uniformly pattern bioactive molecules on their surface. Moreover, it is shown that the MinDE system can form stationary patterns inside lipid vesicles, which allow the targeting and distinctive clustering of higher-order protein structures on their inner leaflet. Given their facile use and robust function, Min proteins thus constitute a valuable molecular toolkit for spatially patterned functionalization of artificial biosystems like cell mimics and microcarriers.


Assuntos
Células Artificiais , Biomimética , Bicamadas Lipídicas/química , Proteínas/química , Fagocitose , Células Artificiais/química
3.
J Biol Chem ; 293(49): 18903-18913, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315107

RESUMO

The dihydroorotase (DHOase) domain of the multifunctional protein carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) catalyzes the third step in the de novo biosynthesis of pyrimidine nucleotides in animals. The crystal structure of the DHOase domain of human CAD (huDHOase) revealed that, despite evolutionary divergence, its active site components are highly conserved with those in bacterial DHOases, encoded as monofunctional enzymes. An important element for catalysis, conserved from Escherichia coli to humans, is a flexible loop that closes as a lid over the active site. Here, we combined mutagenic, structural, biochemical, and molecular dynamics analyses to characterize the function of the flexible loop in the activity of CAD's DHOase domain. A huDHOase chimera bearing the E. coli DHOase flexible loop was inactive, suggesting the presence of distinctive elements in the flexible loop of huDHOase that cannot be replaced by the bacterial sequence. We pinpointed Phe-1563, a residue absolutely conserved at the tip of the flexible loop in CAD's DHOase domain, as a critical element for the conformational equilibrium between the two catalytic states of the protein. Substitutions of Phe-1563 with Ala, Leu, or Thr prevented the closure of the flexible loop and inactivated the protein, whereas substitution with Tyr enhanced the interactions of the loop in the closed position and reduced fluctuations and the reaction rate. Our results confirm the importance of the flexible loop in CAD's DHOase domain and explain the key role of Phe-1563 in configuring the active site and in promoting substrate strain and catalysis.


Assuntos
Aspartato Carbamoiltransferase/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Catálise , Domínio Catalítico , Di-Hidro-Orotase/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Mutação , Fenilalanina/química , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...