Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(26): 29467-29482, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735173

RESUMO

The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.


Assuntos
Bioimpressão , Neoplasias , Animais , Bioimpressão/métodos , Matriz Extracelular , Impressão Tridimensional , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais
2.
Gels ; 8(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35049575

RESUMO

With the currently available materials and technologies it is difficult to mimic the mechanical properties of soft living tissues. Additionally, another significant problem is the lack of information about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol -PVA-, Phytagel -PHY- and methacrylate gelatine -GelMA-) were tested regarding their mechanical properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical response were measured. It was seen that there was a significant difference among the results for the different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being softer or harder. With all this information in mind, a correlation between the mechanical properties of the organs and the different materials was performed. The next conclusions were drawn: (1) to mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic any of the studied tissues.

3.
PLoS One ; 14(11): e0224661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725745

RESUMO

Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20-90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.


Assuntos
Materiais Biomiméticos/química , Fibroblastos/metabolismo , Nanofibras/química , Poliésteres/química , Manguito Rotador , Alicerces Teciduais/química , Humanos , Teste de Materiais , Lesões do Manguito Rotador/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...