Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Phys Sci ; 2(12): 100661, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35028624

RESUMO

Polymer fibers with liquid crystals (LCs) in the core have potential as autonomous sensors of airborne volatile organic compounds (VOCs), with a high surface-to-volume ratio enabling fast and sensitive response and an attractive non-woven textile form factor. We demonstrate their ability to continuously and quantitatively measure the concentration of toluene, cyclohexane, and isopropanol as representative VOCs, via the impact of each VOC on the LC birefringence. The response is fully reversible and repeatable over several cycles, the response time can be as low as seconds, and high sensitivity is achieved when the operating temperature is near the LC-isotropic transition temperature. We propose that a broad operating temperature range can be realized by combining fibers with different LC mixtures, yielding autonomous VOC sensors suitable for integration in apparel or in furniture that can compete with existing consumer-grade electronic VOC sensors in terms of sensitivity and response speed.

2.
ACS Appl Mater Interfaces ; 12(23): 26566-26576, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32420728

RESUMO

The well-known problems of electrospinning hygroscopic polymer fibers in humid air are usually attributed to water condensing onto the jet mid-flight: water enters the jet as an additional solvent, hindering solidification into well-defined fibers. Here, we show that fiber fusion and shape loss seen at the end of the process may actually stem from water already condensing into the Taylor cone from where the jet ejects, if the solvent is volatile and miscible with water, for example, ethanol. The addition of water can radically change the solvent character from good to poor, even if water on its own is an acceptable solvent. Moreover, and counterintuitively, the water condensation promotes solvent evaporation because of the release of heat through the phase transition as well as from the exothermic mixing process. The overall result is that the polymer solution develops a gel-like skin around the Taylor cone. The situation is significantly aggravated in the case of coaxial electrospinning to make functional composite fibers if the injected core fluid forms a complex phase diagram with miscibility gaps together with the polymer sheath solvent and the water condensing from the air. The resulting phase separation coagulates the polymer throughout the Taylor cone, as liquid droplets with different compositions nucleate and spread, setting up strong internal flows and concentration gradients. We demonstrate that these cases of uncontrolled polymer coagulation cause rapid Taylor cone deformation, multiple jet ejection, and the inability to spin coaxial fiber mats, illustrated by the example of coaxial electrospinning of an ethanolic polyvinylpyrrolidone solution with a thermotropic liquid crystal core, at varying humidities.

3.
Soft Matter ; 15(30): 6044-6054, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31225565

RESUMO

Phase separation in mixtures forming liquid crystal (LC) phases is an important yet under-appreciated phenomenon that can drastically influence the behaviour of a multi-component LC. Here we demonstrate, using polarising microscopy with active cooling as well as differential scanning calorimetry, that the phase diagram for mixtures of the LC-forming compound 4'-n-pentylbiphenyl-4-carbonitrile (5CB) with ethanol is surprisingly complex. Binary mixtures reveal a broad miscibility gap that leads to phase separation between two distinct isotropic phases via spinodal decomposition or nucleation and growth. On further cooling the nematic phase enters on the 5CB-rich side, adding to the complexity. Significantly, water contamination dramatically raises the temperature range of the miscibility gap, bringing up the critical temperature for spinodal decomposition from ∼ 2 °C for the anhydrous case to >50 °C if just 3 vol% water is added to the ethanol. We support the experiments with a theoretical treatment that qualitatively reproduces the phase diagrams as well as the transition dynamics, with and without water. Our study highlights the impact of phase separation in LC-forming mixtures, spanning from equilibrium coexistence of multiple liquid phases to non-equilibrium effects due to persistent spatial concentration gradients.

4.
J Phys Condens Matter ; 29(13): 133003, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28199222

RESUMO

The extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...