Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(26): eadh2522, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390203

RESUMO

Electrohydrodynamically driven active particles based on Quincke rotation have quickly become an important model system for emergent collective behavior in nonequilibrium colloidal systems. Like most active particles, Quincke rollers are intrinsically nonmagnetic, preventing the use of magnetic fields to control their complex dynamics on the fly. Here, we report on magnetic Quincke rollers based on silica particles doped with superparamagnetic iron oxide nanoparticles. We show that their magnetic nature enables the application of both externally controllable forces and torques at high spatial and temporal precision, leading to several versatile control mechanisms for their single-particle dynamics and collective states. These include tunable interparticle interactions, potential energy landscapes, and advanced programmable and teleoperated behaviors, allowing us to discover and probe active chaining, anisotropic active sedimentation-diffusion equilibria, and collective states in various geometries and dimensionalities.


Assuntos
Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Físicos , Difusão , Anisotropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...