Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Serv Comput ; 15(3): 1220-1232, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35936760

RESUMO

In an attempt to reduce the infection rate of the COrona VIrus Disease-19 (Covid-19) countries around the world have echoed the exigency for an economical, accessible, point-of-need diagnostic test to identify Covid-19 carriers so that they (individuals who test positive) can be advised to self isolate rather than the entire community. Availability of a quick turn-around time diagnostic test would essentially mean that life, in general, can return to normality-at-large. In this regards, studies concurrent in time with ours have investigated different respiratory sounds, including cough, to recognise potential Covid-19 carriers. However, these studies lack clinical control and rely on Internet users confirming their test results in a web questionnaire (crowdsourcing) thus rendering their analysis inadequate. We seek to evaluate the detection performance of a primary screening tool of Covid-19 solely based on the cough sound from 8,380 clinically validated samples with laboratory molecular-test (2,339 Covid-19 positive and 6,041 Covid-19 negative) under quantitative RT-PCR (qRT-PCR) from certified laboratories. All collected samples were clinically labelled, i.e., Covid-19 positive or negative, according to the results in addition to the disease severity based on the qRT-PCR threshold cycle (Ct) and lymphocytes count from the patients. Our proposed generic method is an algorithm based on Empirical Mode Decomposition (EMD) for cough sound detection with subsequent classification based on a tensor of audio sonographs and deep artificial neural network classifier with convolutional layers called 'DeepCough'. Two different versions of DeepCough based on the number of tensor dimensions, i.e., DeepCough2D and DeepCough3D, have been investigated. These methods have been deployed in a multi-platform prototype web-app 'CoughDetect'. Covid-19 recognition results rates achieved a promising AUC (Area Under Curve) of [Formula: see text] 98 . 80 % ± 0 . 83 % , sensitivity of [Formula: see text] 96 . 43 % ± 1 . 85 % , and specificity of [Formula: see text] 96 . 20 % ± 1 . 74 % and average AUC of [Formula: see text] 81 . 08 % ± 5 . 05 % for the recognition of three severity levels. Our proposed web tool as a point-of-need primary diagnostic test for Covid-19 facilitates the rapid detection of the infection. We believe it has the potential to significantly hamper the Covid-19 pandemic across the world.

2.
Comput Methods Programs Biomed ; 213: 106509, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800805

RESUMO

BACKGROUND AND OBJECTIVE: The schizophrenia diagnosis represents a difficult task because of the confusing descriptions of symptoms given by the patient, their similarity among several disorders, the lower familiarity with genetic predisposition, and the probably inadequate response to the treatment. Neuro-biological markers of schizophrenia, as a quantitative relationship between the psychiatrist's reports and the biology of the brain, could be used. Functional Magnetic Resonance Imaging (fMRI) obtain the subject's performance in cognitive tasks and may find significant differences between the patient's data and controls. The input data of classifiers may imply alterations in diagnosis; therefore, it is essential to ensure an adequate representation to describe the entire dataset classified. METHODS: We propose a supervoxels-based representation calculated by two main steps: the short-range connectivity, supervoxels' generation using a Fuzzy Iterative Clustering algorithm, and the long-range connectivity, employing Detrended Cross-Correlation Analysis among supervoxels. The unrelated supervoxels, through a statistical test based on critical points calculated empirically, are removed. The remainder supervoxels are the input for feature selectors to extract the discriminative supervoxels. We implement support vector machine classifiers using the correlation coefficient of the significant supervoxels. The dataset of 1.5 Tesla was downloaded from the SchizConnect site, where the fMRI data, during an auditory oddball task, was acquired. We calculate the performance of the classifiers using a leave-one-out cross-validation and compute the area under the Receiver Operating Characteristic curve and a permutation test to ensure no bias in the classifiers. RESULTS: According to the permutation test, with p-values less than the significance level of 0.05, the classifiers extract discriminative class structure from data where no bias is shown. Our supervoxels-based representation gets the maximum values of sensitivity, specificity, and accuracy of 92.9%, 100%, and 96.4%, respectively. The discriminative brain regions, to discern among patients and controls, are extracted; these regions also are mentioned by the related works. CONCLUSIONS: The proposed representation, based on supervoxels, is a data-driven model that does not use predefined models of the signal nor pre-relocated brain regions of interest. The results are competitive against the related works, and the relevant supervoxels are related to the schizophrenia diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Esquizofrenia/diagnóstico por imagem , Máquina de Vetores de Suporte
3.
J Neurosci Methods ; 281: 7-20, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223023

RESUMO

BACKGROUND: The automatic analysis of facial expressions is an evolving field that finds several clinical applications. One of these applications is the study of facial bradykinesia in Parkinson's disease (PD), which is a major motor sign of this neurodegenerative illness. Facial bradykinesia consists in the reduction/loss of facial movements and emotional facial expressions called hypomimia. NEW METHOD: In this work we propose an automatic method for studying facial expressions in PD patients relying on video-based METHODS: 17 Parkinsonian patients and 17 healthy control subjects were asked to show basic facial expressions, upon request of the clinician and after the imitation of a visual cue on a screen. Through an existing face tracker, the Euclidean distance of the facial model from a neutral baseline was computed in order to quantify the changes in facial expressivity during the tasks. Moreover, an automatic facial expressions recognition algorithm was trained in order to study how PD expressions differed from the standard expressions. RESULTS: Results show that control subjects reported on average higher distances than PD patients along the tasks. COMPARISON WITH EXISTING METHODS: This confirms that control subjects show larger movements during both posed and imitated facial expressions. Moreover, our results demonstrate that anger and disgust are the two most impaired expressions in PD patients. CONCLUSIONS: Contactless video-based systems can be important techniques for analyzing facial expressions also in rehabilitation, in particular speech therapy, where patients could get a definite advantage from a real-time feedback about the proper facial expressions/movements to perform.


Assuntos
Expressão Facial , Doença de Parkinson , Máquina de Vetores de Suporte , Gravação em Vídeo/métodos , Idoso , Idoso de 80 Anos ou mais , Emoções , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Comportamento Imitativo , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/classificação , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...