Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(2): 024308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38764942

RESUMO

Significance: Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders. Aim: We quantified the effect of continuous-wave near-infrared (CW-NIR) laser illumination on single neuron dynamics using sustained stimulation and an open-source activity-dependent protocol to identify the biophysical mechanisms underlying this modulation and its time course. Approach: We characterized the effect by simultaneously performing long intracellular recordings of membrane potential while delivering sustained and closed-loop CW-NIR laser stimulation. We used waveform metrics and conductance-based models to assess the role of specific biophysical candidates on the modulation. Results: We show that CW-NIR sustained illumination asymmetrically accelerates action potential dynamics and the spiking rate on single neurons, while closed-loop stimulation unveils its action at different phases of the neuron dynamics. Our model study points out the action of CW-NIR on specific ionic-channels and the key role of temperature on channel properties to explain the modulatory effect. Conclusions: Both sustained and activity-dependent CW-NIR stimulation effectively modulate neuronal dynamics by a combination of biophysical mechanisms. Our open-source protocols can help to disseminate this non-invasive optical stimulation in novel research and clinical applications.

2.
Neural Netw ; 164: 464-475, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196436

RESUMO

Biohybrid circuits of interacting living and model neurons are an advantageous means to study neural dynamics and to assess the role of specific neuron and network properties in the nervous system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain hybridization. In this work, we deal with the automatized online and offline adaptation, exploration and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that yield dynamical invariants between living and model neurons. We address dynamical invariants that form robust cycle-by-cycle relationships between the intervals that build neural sequences from such interaction. Our methodology first attains automated adaptation of model neurons to work in the same amplitude regime and time scale of living neurons. Then, we address the automatized exploration and mapping of the synapse parameter space that lead to a specific dynamical invariant target. Our approach uses multiple configurations and parallel computing from electrophysiological recordings of living neurons to build full mappings, and genetic algorithms to achieve an instance of the target dynamics for the hybrid circuit in a short time. We illustrate and validate such strategy in the context of the study of functional sequences in neural rhythms, which can be easily generalized for any variety of hybrid circuit configuration. This approach facilitates both the building of hybrid circuits and the accomplishment of their scientific goal.


Assuntos
Inteligência Artificial , Neurônios , Neurônios/fisiologia , Encéfalo/fisiologia , Sinapses/fisiologia , Modelos Neurológicos
3.
Neuroinformatics ; 18(3): 377-393, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31930463

RESUMO

Hybrid circuits built by creating mono- or bi-directional interactions among living cells and model neurons and synapses are an effective way to study neuron, synaptic and neural network dynamics. However, hybrid circuit technology has been largely underused in the context of neuroscience studies mainly because of the inherent difficulty in implementing and tuning this type of interactions. In this paper, we present a set of algorithms for the automatic adaptation of model neurons and connections in the creation of hybrid circuits with living neural networks. The algorithms perform model time and amplitude scaling, real-time drift adaptation, goal-driven synaptic and model tuning/calibration and also automatic parameter mapping. These algorithms have been implemented in RTHybrid, an open-source library that works with hard real-time constraints. We provide validation examples by building hybrid circuits in a central pattern generator. The results of the validation experiments show that the proposed dynamic adaptation facilitates closed-loop communication among living and artificial model neurons and connections, and contributes to characterize system dynamics, achieve control, automate experimental protocols and extend the lifespan of the preparations.


Assuntos
Geradores de Padrão Central/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Animais , Braquiúros , Sinapses/fisiologia
4.
Front Neuroinform ; 13: 11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914940

RESUMO

Closed-loop technologies provide novel ways of online observation, control and bidirectional interaction with the nervous system, which help to study complex non-linear and partially observable neural dynamics. These protocols are often difficult to implement due to the temporal precision required when interacting with biological components, which in many cases can only be achieved using real-time technology. In this paper we introduce RTHybrid (www.github.com/GNB-UAM/RTHybrid), a free and open-source software that includes a neuron and synapse model library to build hybrid circuits with living neurons in a wide variety of experimental contexts. In an effort to encourage the standardization of real-time software technology in neuroscience research, we compared different open-source real-time operating system patches, RTAI, Xenomai 3 and Preempt-RT, according to their performance and usability. RTHybrid has been developed to run over Linux operating systems supporting both Xenomai 3 and Preempt-RT real-time patches, and thus allowing an easy implementation in any laboratory. We report a set of validation tests and latency benchmarks for the construction of hybrid circuits using this library. With this work we want to promote the dissemination of standardized, user-friendly and open-source software tools developed for open- and closed-loop experimental neuroscience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...