Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1142462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998698

RESUMO

Introduction: With dwindling global freshwater supplies and increasing water stress, agriculture is coming under increasing pressure to reduce water use. Plant breeding requires high analytical capabilities. For this reason, near-infrared spectroscopy (NIRS) has been used to develop prediction equations for whole-plant samples, particularly for predicting dry matter digestibility, which has a major impact on the energy value of forage maize hybrids and is required for inclusion in the official French catalogue. Although the historical NIRS equations have long been used routinely in seed company breeding programmes, they do not predict all variables with the same accuracy. In addition, little is known about how accurate their predictions are under different water stress-environments. Methods: Here, we examined the effects of water stress and stress intensity on agronomic, biochemical, and NIRS predictive values in a set of 13 modern S0-S1 forage maize hybrids under four different environmental conditions resulting from the combination of a northern and southern location and two monitored water stress levels in the south. Results: First, we compared the reliability of NIRS predictions for basic forage quality traits obtained using the historical NIRS predictive equations and the new equations we recently developed. We found that NIRS predicted values were affected to varying degrees by environmental conditions. We also showed that forage yield gradually decreased as a function of water stress, whereas both dry matter and cell wall digestibilities increased regardless of the intensity of water stress, with variability among the tested varieties decreasing under the most stressed conditions. Discussion: By combining forage yield and dry matter digestibility, we were able to quantify digestible yield and identify varieties with different strategies for coping with water stress, raising the exciting possibility that important potential selection targets still exist. Finally, from a farmer's perspective, we were able to show that late silage harvest has no effect on dry matter digestibility and that moderate water stress does not necessarily result in a loss of digestible yield.

2.
Front Plant Sci ; 12: 628960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719300

RESUMO

Maize feeding value is strongly linked to plant digestibility. Cell wall composition and structure can partly explain cell wall digestibility variations, and we recently showed that tissue lignification and lignin spatial distribution also contribute to cell wall digestibility variations. Although the genetic determinism of digestibility and cell wall composition has been studied for more than 20 years, little is available concerning that of tissue lignification. Moreover, maize yield is negatively impacted by water deficit, and we newly highlighted the impact of water deficit on cell wall digestibility and composition together with tissue lignification. Consequently, the aim of this study was to explore the genetic mechanisms of lignin distribution in link with cell wall composition and digestibility under contrasted water regimes. Maize internodes from a recombinant inbred line (RIL) population grown in field trials with contrasting irrigation scenarios were biochemically and histologically quantified. Results obtained showed that biochemical and histological traits have different response thresholds to water deficit. Histological profiles were therefore only modified under pronounced water deficit, while most of the biochemical traits responded whatever the strength of the water deficit. Three main clusters of quantitative trait locus (QTL) for histological traits were detected. Interestingly, overlap between the biochemical and histological clusters is rare, and one noted especially colocalizations between histological QTL/clusters and QTL for p-coumaric acid content. These findings reinforce the suspected role of tissue p-coumaroylation for both the agronomic properties of plants as well as their digestibility.

3.
Data Brief ; 32: 106264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32984461

RESUMO

This dataset presents 127 raw near infrared spectra of different organic samples acquired on three different spectrometers in three different labs. An example of data processing is shown to create six spectra transfer models between the three spectrometers (two by two). In order to build and validate these transfer models, the dataset was split into two sets of spectra: a first set was used to compute six spectra transfer models thanks to the Piecewise Direct standardisation function (PDS). A second set of spectra, independent of the first one was used to validate transfer models. Spectrum treatments and models were created on ChemFlow (https://vm-chemflow-francegrille.eu/), a free online chemometric software that includes all the necessary functions.

4.
PLoS One ; 14(7): e0219923, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31361770

RESUMO

Plant cell walls development is an integrated process during which several components are deposited successively. In the cell walls in grass, the accessibility of structural polysaccharides is limited by the cell walls structure and composition mainly as a result of phenolic compounds. Here, we studied the patterns of cell walls establishment in the internode supporting the ear in three distinct maize genotypes. The developmental patterns observed in the internode cell walls in terms of its composition are reported with an emphasis on lignification, p-coumaroylation and feruloylation. We combined biochemical and histological approaches and revealed that internode cell walls development in maize before flowering is characterized by the rapid deposition of secondary cell walls components and robust lignification in both the pith and the rind. After flowering and until silage maturity, the slow deposition of secondary walls components occurs in the cortical region, and the deposited lignins are rich in ß-O-4 bonds and are highly p-coumaroylated. We conclude the paper by proposing a revised spatiotemporal model based on that proposed by Terashima et al. (1993) for cell walls development in grass.


Assuntos
Ácidos Cumáricos/química , Lignina/química , Propionatos/química , Zea mays/crescimento & desenvolvimento , Parede Celular/química , Genótipo , Endogamia , Extratos Vegetais/química , Distribuição Tecidual , Zea mays/química , Zea mays/genética
5.
Front Plant Sci ; 10: 488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105719

RESUMO

The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and ß-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.

6.
Theor Appl Genet ; 132(5): 1523-1542, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734114

RESUMO

KEY MESSAGE: Silage quality traits of maize hybrids between the Dent and Flint heterotic groups mostly involved QTL specific of each parental group, some of them showing unfavorable pleiotropic effects on yield. Maize (Zea mays L.) is commonly used as silage for cattle feeding in Northern Europe. In addition to biomass production, improving whole-plant digestibility is a major breeding objective. To identify loci involved in the general (GCA, parental values) and specific combining ability (SCA, cross-specific value) components of hybrid value, we analyzed an incomplete factorial design of 951 hybrids obtained by crossing inbred lines issued from two multiparental connected populations, each specific to one of the heterotic groups used for silage in Europe ("Dent" and "Flint"). Inbred lines were genotyped for approximately 20K single nucleotide polymorphisms, and hybrids were phenotyped in eight environments for seven silage quality traits measured by near-infrared spectroscopy, biomass yield and precocity (partly analyzed in a previous study). We estimated variance components for GCA and SCA and their interaction with environment. We performed QTL detection using different models adapted to this hybrid population. Strong family effects and a predominance of GCA components compared to SCA were found for all traits. In total, 230 QTL were detected, with only two showing SCA effects significant at the whole-genome level. More than 80% of GCA QTL were specific of one heterotic group. QTL explained individually less than 5% of the phenotypic variance. QTL co-localizations and correlation between QTL effects of quality and productivity traits suggest at least partial pleiotropic effects. This work opens new prospects for improving maize hybrid performances for both biomass productivity and quality accounting for complementarities between heterotic groups.


Assuntos
Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Hibridização Genética , Zea mays/crescimento & desenvolvimento
7.
PLoS One ; 14(12): e0227011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891625

RESUMO

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.


Assuntos
Ração Animal , Parede Celular/metabolismo , Redes Reguladoras de Genes , Locos de Características Quantitativas , Zea mays/genética , Alelos , Parede Celular/genética , Celulose/metabolismo , Mapeamento Cromossômico , Conjuntos de Dados como Assunto , Genoma de Planta , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Oxirredução , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Dobramento de Proteína , RNA-Seq , Biologia de Sistemas , Zea mays/citologia
8.
New Phytol ; 218(3): 974-985, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574807

RESUMO

The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops.


Assuntos
Brachypodium/enzimologia , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arabinose/metabolismo , Sequência de Bases , Brachypodium/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Cromossomos de Plantas/genética , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosiltransferases/química , Glicosiltransferases/genética , Endogamia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Locos de Características Quantitativas/genética , Interferência de RNA , Xilose/metabolismo
9.
Plant Methods ; 13: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118822

RESUMO

BACKGROUND: Crop species are of increasing interest both for cattle feeding and for bioethanol production. The degradability of the plant material largely depends on the lignification of the tissues, but it also depends on histological features such as the cellular morphology or the relative amount of each tissue fraction. There is therefore a need for high-throughput phenotyping systems that quantify the histology of plant sections. RESULTS: We developed custom image processing and an analysis procedure for quantifying the histology of maize stem sections coloured with FASGA staining and digitalised with whole microscopy slide scanners. The procedure results in an automated segmentation of the input images into distinct tissue regions. The size and the fraction area of each tissue region can be quantified, as well as the average coloration within each region. The measured features can discriminate contrasted genotypes and identify changes in histology induced by environmental factors such as water deficit. CONCLUSIONS: The simplicity and the availability of the software will facilitate the elucidation of the relationships between the chemical composition of the tissues and changes in plant histology. The tool is expected to be useful for the study of large genetic populations, and to better understand the impact of environmental factors on plant histology.

10.
New Phytol ; 206(1): 422-435, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25425527

RESUMO

Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Quantitative trait loci (QTLs) for flowering time (FT) and anthocyanin accumulation under a high-light and low-temperature scenario versus a control environment were mapped. Major QTLs were confirmed using near-isogenic lines. Candidate genes were examined using mutants and gene expression studies as well as transgenic complementation. Several QTLs were found for FT and for anthocyanin content, of which one QTL co-located at the ENHANCER OF AG-4 2 (HUA2) locus. That HUA2 is a regulator of both pathways was confirmed by the analysis of loss-of-function mutants. For a strong expression of anthocyanin, additional allelic variation was detected for the PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2 genes which control the anthocyanin pathway. The genetic control of variation for anthocyanin content was dissected in A. thaliana and shown to be affected by a common regulator of flowering and anthocyanin biosynthesis together with anthocyanin-specific regulators.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Locos de Características Quantitativas/genética , Fatores de Transcrição/genética , Alelos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Bases de Dados Genéticas , Meio Ambiente , Flores/genética , Flores/metabolismo , Expressão Gênica , Luz , Proteínas Associadas a Pancreatite , Sequências Reguladoras de Ácido Nucleico , Reprodução , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(3): 905-10, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25548158

RESUMO

Daily rhythms of gene expression provide a benefit to most organisms by ensuring that biological processes are activated at the optimal time of day. Although temporal patterns of expression control plant traits of agricultural importance, how natural genetic variation modifies these patterns during the day and how precisely these patterns influence phenotypes is poorly understood. The circadian clock regulates the timing of gene expression, and natural variation in circadian rhythms has been described, but circadian rhythms are measured in artificial continuous conditions that do not reflect the complexity of biologically relevant day/night cycles. By studying transcriptional rhythms of the evening-expressed gene gigantea (GI) at high temporal resolution and during day/night cycles, we show that natural variation in the timing of GI expression occurs mostly under long days in 77 Arabidopsis accessions. This variation is explained by natural alleles that alter light sensitivity of GI, specifically in the evening, and that act at least partly independent of circadian rhythms. Natural alleles induce precise changes in the temporal waveform of GI expression, and these changes have detectable effects on phytochrome interacting factor 4 expression and growth. Our findings provide a paradigm for how natural alleles act within day/night cycles to precisely modify temporal gene expression waveforms and cause phenotypic diversity. Such alleles could confer an advantage by adjusting the activity of temporally regulated processes without severely disrupting the circadian system.


Assuntos
Arabidopsis/fisiologia , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Luz , Transdução de Sinais
12.
Front Plant Sci ; 5: 609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426126

RESUMO

Limited water availability is one of the most prominent abiotic constraints to plant survival and reproduction. Thus, plants have evolved different strategies to cope with water deficit, including modification of their growth and timing of developmental events such as flowering. In this work, we explore the link between flowering time and growth responses to moderate drought stress in Arabidopsis thaliana using natural variation for these traits found in the Landsberg erecta x Antwerp-1 recombinant inbred line population. We developed and phenotyped near isogenic lines containing different allelic combinations at three interacting quantitative trait loci (QTL) affecting both flowering time and growth in response to water deficit. We used these lines to confirm additive and epistatic effects of the three QTL and observed a strong association between late flowering and reduced sensitivity to drought. Analyses of growth responses to drought over time revealed that late flowering plants were able to recover their growth in the second half of their vegetative development. In contrast, early flowering, a common drought escape strategy that ensures plant survival under severe water deficit, was associated with strongly impaired plant fitness. The results presented here indicate that late flowering may be advantageous under continuous mild water deficit as it allows stress acclimatization over time.

13.
New Phytol ; 202(4): 1173-1183, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24571269

RESUMO

Manganese (Mn) is an essential nutrient required for plant growth, in particular in the process of photosynthesis. Plant performance is influenced by various environmental stresses including contrasting temperatures, light or nutrient deficiencies. The molecular responses of plants exposed to such stress factors in combination are largely unknown. Screening of 108 Arabidopsis thaliana (Arabidopsis) accessions for reduced photosynthetic performance at chilling temperatures was performed and one accession (Hog) was isolated. Using genetic and molecular approaches, the molecular basis of this particular response to temperature (G × E interaction) was identified. Hog showed an induction of a severe leaf chlorosis and impaired growth after transfer to lower temperatures. We demonstrated that this response was dependent on the nutrient content of the soil. Genetic mapping and complementation identified NRAMP1 as the causal gene. Chlorotic phenotype was associated with a histidine to tyrosine (H239Y) substitution in the allele of Hog NRAMP1. This led to lethality when Hog seedlings were directly grown at 4°C. Chemical complementation and hydroponic culture experiments showed that Mn deficiency was the major cause of this G × E interaction. For the first time, the NRAMP-specific highly conserved histidine was shown to be crucial for plant performance.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Manganês/metabolismo , Alelos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Mapeamento Cromossômico , Temperatura Baixa , Interação Gene-Ambiente , Genótipo , Histidina , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fenótipo , Fotossíntese , Plântula , Análise de Sequência de DNA
14.
Mol Ecol ; 22(13): 3552-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23506537

RESUMO

Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.


Assuntos
Arabidopsis/genética , Interação Gene-Ambiente , Locos de Características Quantitativas , Seleção Genética , Alelos , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Meio Ambiente , Epistasia Genética , Flores/genética , Flores/crescimento & desenvolvimento , Ligação Genética , Fenótipo , Polimorfismo Genético , Reprodução
15.
Theor Appl Genet ; 126(5): 1151-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23358861

RESUMO

Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.


Assuntos
Parede Celular/genética , Mapeamento Cromossômico , Genes de Plantas/genética , Ligação Genética , Locos de Características Quantitativas , Zea mays/genética , Cromossomos de Plantas , Repetições de Microssatélites , Fenótipo
16.
Mol Biol Evol ; 29(6): 1655-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22319159

RESUMO

Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana, the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flagelina/imunologia , Proteínas Quinases/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Carga Bacteriana , Brassicaceae/genética , Brassicaceae/imunologia , Brassicaceae/microbiologia , Mapeamento Cromossômico , Fatores de Iniciação em Eucariotos/metabolismo , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Polimorfismo Genético , Ligação Proteica , Proteínas Quinases/genética , Pseudomonas syringae/imunologia , Pseudomonas syringae/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/microbiologia , Análise de Sequência de DNA
17.
PLoS One ; 6(6): e20886, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738591

RESUMO

A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.


Assuntos
Arabidopsis/fisiologia , Dormência de Plantas/fisiologia , Locos de Características Quantitativas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dormência de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
18.
Curr Opin Plant Biol ; 14(4): 378-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21561797

RESUMO

There is now ample evidence that plant development, responses to abiotic environments, and immune responses are tightly intertwined in their physiology. Thus optimization of the immune system during evolution will occur in coordination with that of plant development. Two alternative and possibly complementary forces are at play: genetic constraints due to the pleiotropic action of players in both systems, and coevolution, if developmental changes modulate the cost-benefit balance of immunity. A current challenge is to elucidate the ecological forces driving evolution of quantitative variation for defense at molecular level. The analysis of natural co-variation for developmental and immunity traits in Arabidopsis thaliana promises to bring important insights.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bactérias/imunologia , Evolução Molecular , Fungos/imunologia , Genes de Plantas , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bactérias/patogenicidade , Ecologia , Meio Ambiente , Fungos/patogenicidade , Pleiotropia Genética , Interações Hospedeiro-Patógeno , Modelos Biológicos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Estômatos de Plantas/fisiologia , Temperatura
19.
PLoS One ; 5(12): e15198, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21188145

RESUMO

Plant responses to environmental stresses are polygenic and complex traits. In this study quantitative genetics using natural variation in Arabidopsis thaliana was used to investigate the genetic architecture of plant responses to salt stress. Eighty seven A. thaliana accessions were screened and showed a large variation for root development and seed germination under 125 and 200 mM NaCl, respectively. Twenty two quantitative trait loci for these traits have been detected by phenotyping two recombinants inbred line populations, Sha x Col and Sha x Ler. Four QTLs controlling germination under salt were detected in the Sha x Col population. Interestingly, only one allelic combination at these four QTLs inhibits germination under salt stress, implying strong epistatic interactions between them. In this interacting context, we confirmed the effect of one QTL by phenotyping selected heterozygous inbred families. We also showed that this QTL is involved in the control of germination under other stress conditions such as KCl, mannitol, cold, glucose and ABA. Our data highlights the presence of a genetic network which consists of four interacting QTLs and controls germination under limiting environmental conditions.


Assuntos
Arabidopsis/genética , Sais/química , Cruzamentos Genéticos , Meio Ambiente , Epistasia Genética , Genótipo , Germinação/genética , Glucose/química , Heterozigoto , Escore Lod , Mutação , Fenótipo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas , Locos de Características Quantitativas , Sementes
20.
Nat Genet ; 42(12): 1135-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21037570

RESUMO

Accumulation of genetic incompatibilities within species can lead to reproductive isolation and, potentially, speciation. In this study, we show that allelic variation at SRF3 (Strubbelig Receptor Family 3), encoding a receptor-like kinase, conditions the occurrence of incompatibility between Arabidopsis thaliana accessions. The geographical distribution of SRF3 alleles reveals that allelic forms causing epistatic incompatibility with a Landsberg erecta allele at the RPP1 resistance locus are present in A. thaliana accessions in central Asia. Incompatible SRF3 alleles condition for an enhanced early immune response to pathogens as compared to the resistance-dampening effect of compatible SRF3 forms in isogenic backgrounds. Variation in disease susceptibility suggests a basis for the molecular patterns of a recent selective sweep detected at the SRF3 locus in central Asian populations.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Variação Genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Alelos , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Cruzamentos Genéticos , Loci Gênicos/genética , Genoma de Planta/genética , Geografia , Dados de Sequência Molecular , Pseudomonas syringae/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...