Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6434, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852971

RESUMO

Climate, technologies, and socio-economic changes will influence future building energy use in cities. However, current low-resolution regional and state-level analyses are insufficient to reliably assist city-level decision-making. Here we estimate mid-century hourly building energy consumption in 277 U.S. urban areas using a bottom-up approach. The projected future climate change results in heterogeneous changes in energy use intensity (EUI) among urban areas, particularly under higher warming scenarios, with on average 10.1-37.7% increases in the frequency of peak building electricity EUI but over 110% increases in some cities. For each 1 °C of warming, the mean city-scale space-conditioning EUI experiences an average increase/decrease of ~14%/ ~ 10% for space cooling/heating. Heterogeneous city-scale building source energy use changes are primarily driven by population and power sector changes, on average ranging from -9% to 40% with consistent south-north gradients under different scenarios. Across the scenarios considered here, the changes in city-scale building source energy use, when averaged over all urban areas, are as follows: -2.5% to -2.0% due to climate change, 7.3% to 52.2% due to population growth, and -17.1% to -8.9% due to power sector decarbonization. Our findings underscore the necessity of considering intercity heterogeneity when developing sustainable and resilient urban energy systems.

2.
Nat Commun ; 8: 14916, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504255

RESUMO

Climate change could significantly affect consumer demand for energy in buildings, as changing temperatures may alter heating and cooling loads. Warming climates could also lead to the increased adoption and use of cooling technologies in buildings. We assess residential electricity and natural gas demand in Los Angeles, California under multiple climate change projections and investigate the potential for energy efficiency to offset increased demand. We calibrate residential energy use against metered data, accounting for differences in building materials and appliances. Under temperature increases, we find that without policy intervention, residential electricity demand could increase by as much as 41-87% between 2020 and 2060. However, aggressive policies aimed at upgrading heating/cooling systems and appliances could result in electricity use increases as low as 28%, potentially avoiding the installation of new generation capacity. We therefore recommend aggressive energy efficiency, in combination with low-carbon generation sources, to offset projected increases in residential energy demand.

3.
Environ Sci Technol ; 49(1): 369-76, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25438089

RESUMO

Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.


Assuntos
Poluição do Ar , Veículos Automotores , Emissões de Veículos , Cidades , Clima , Efeito Estufa , Humanos , Material Particulado/análise , Meios de Transporte , Incerteza , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...