Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1357797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463486

RESUMO

Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.

2.
Nat Ecol Evol ; 8(4): 663-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366132

RESUMO

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.


Assuntos
Ecossistema , Herbivoria , Cadeia Alimentar , Florestas , Mudança Climática , Plantas
3.
Sci Data ; 10(1): 892, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110417

RESUMO

A working group from the Global Library of Underwater Biological Sounds effort collaborated with the World Register of Marine Species (WoRMS) to create an inventory of species confirmed or expected to produce sound underwater. We used several existing inventories and additional literature searches to compile a dataset categorizing scientific knowledge of sonifery for 33,462 species and subspecies across marine mammals, other tetrapods, fishes, and invertebrates. We found 729 species documented as producing active and/or passive sounds under natural conditions, with another 21,911 species deemed likely to produce sounds based on evaluated taxonomic relationships. The dataset is available on both figshare and WoRMS where it can be regularly updated as new information becomes available. The data can also be integrated with other databases (e.g., SeaLifeBase, Global Biodiversity Information Facility) to advance future research on the distribution, evolution, ecology, management, and conservation of underwater soniferous species worldwide.


Assuntos
Biodiversidade , Ecologia , Animais , Cetáceos , Peixes , Som
4.
J Acoust Soc Am ; 154(5): 3252-3258, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975736

RESUMO

Despite the importance of acoustic signaling in fishes, the prevalence of the behavioral contexts associated with their active (i.e., intentional) sound production remains unclear. A systematized review was conducted to explore documented acoustic behaviors in marine, subtropical fishes and potential influences affecting their relative pervasiveness. Data were collected on 186 actively soniferous fish species studied across 194 publications, identified based on existing FishSounds and FishBase datasets. Disturbance was the most common behavioral context associated with active sound production-reported for 140 species or 75% of the species studied-and then aggression (n = 46 species, 25%) and reproduction (n = 34 species, 18%). This trend, however, somewhat differed when examined by research effort, study environment, and fish family, such as reproductive sounds being more commonly reported by studies conducted in the wild. The synthesis of fish sound production behaviors was in some ways stymied by the fact that many species' sound production did not have discernible associated behavioral contexts and that some investigations did not clearly identify the study environments in which active sound production was observed. These findings emphasize the importance of context-behavioral or otherwise-when studying acoustic behaviors in fishes.


Assuntos
Acústica , Som , Animais , Peixes , Agressão
5.
Environ Manage ; 68(4): 477-490, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34386831

RESUMO

Submerged aquatic vegetation (SAV) improves environmental conditions by acting as a sediment stabilizer and nutrient retention tool; therefore, reintroduction of SAV is a common freshwater restoration goal. Initial plant establishment is often difficult in suboptimal conditions, and planting material with specific traits may increase establishment rates. Here we evaluate the variability in plant traits based on collection location. We find consistent differences in traits of plants collected from different natural water bodies, and those differences persist in plants grown from seeds under common garden greenhouse conditions-presumably because of genetic differentiation. In three separate mesocosm experiments, we tested the interactive impacts of collection location and environmental condition (control conditions, reduced light, elevated nutrients, or a combination of reduced light and elevated nutrients) on plant reproduction and on traits that might indicate future restoration success (plant height, number of leaves, and rhizome diameter). In most cases, plant traits at the end of the experiments varied by collection location, environmental condition, and an interaction between the two. The best performing plants also depended on response variable (e.g., plant height or number of new shoots produced). Together these results suggest that unpredictable environmental conditions at restoration sites will make selection of a single high-performing plant source difficult, so we suggest incorporating a diverse set of collection locations to increase the probability of incorporating desirable traits.


Assuntos
Ecossistema , Plantas , Água Doce
6.
PLoS One ; 11(6): e0154532, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258011

RESUMO

Growing evidence shows that increasing global temperature causes population declines and latitudinal shifts in geographical distribution for plants living near their thermal limits. Yet, even populations living well within established thermal limits of a species may suffer as the frequency and intensity of warming events increase with climate change. Adaptive response to this stress at the population level depends on the presence of genetic variation in thermal tolerance in the populations in question, yet few data exist to evaluate this. In this study, we examined the immediate effects of a moderate warming event of 4.5°C lasting 5 weeks and the legacy effects after a 5 week recovery on different genotypes of the marine plant Zostera marina (eelgrass). We conducted the experiment in Bodega Bay, CA USA, where average summer water temperatures are 14-15°C, but extended warming periods of 17-18°C occur episodically. Experimental warming increased shoot production by 14% compared to controls held at ambient temperature. However, after returning temperature to ambient levels, we found strongly negative, delayed effects of warming on production: shoot production declined by 27% and total biomass decreased by 50% relative to individuals that had not been warmed. While all genotypes' production decreased in the recovery phase, genotypes that grew the most rapidly under benign thermal conditions (control) were the most susceptible to the detrimental effects of warming. This suggests a potential tradeoff in relative performance at normal vs. elevated temperatures. Modest short-term increases in water temperature have potentially prolonged negative effects within the species' thermal envelope, but genetic variation within these populations may allow for population persistence and adaptation. Further, intraspecific variation in phenology can result in maintenance of population diversity and lead to enhanced production in diverse stands given sufficient frequency of warming or other stress events.


Assuntos
Aclimatação , Mudança Climática , Genótipo , Temperatura , Zosteraceae/fisiologia , Biomassa , Ecossistema , Aquecimento Global
7.
PLoS One ; 9(2): e89316, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586683

RESUMO

Eelgrass (Zostera marina) forms the foundation of an important shallow coastal community in protected estuaries and bays. Widespread population declines have stimulated restoration efforts, but these have often overlooked the importance of maintaining the evolutionary potential of restored populations by minimizing the reduction in genetic diversity that typically accompanies restoration. In an experiment simulating a small-scale restoration, we tested the effectiveness of a buoy-deployed seeding technique to maintain genetic diversity comparable to the seed source populations. Seeds from three extant source populations in San Francisco Bay were introduced into eighteen flow-through baywater mesocosms. Following seedling establishment, we used seven polymorphic microsatellite loci to compare genetic diversity indices from 128 shoots to those found in the source populations. Importantly, allelic richness and expected heterozygosity were not significantly reduced in the mesocosms, which also preserved the strong population differentiation present among source populations. However, the inbreeding coefficient F IS was elevated in two of the three sets of mesocosms when they were grouped according to their source population. This is probably a Wahlund effect from confining all half-siblings within each spathe to a single mesocosm, elevating F IS when the mesocosms were considered together. The conservation of most alleles and preservation of expected heterozygosity suggests that this seeding technique is an improvement over whole-shoot transplantation in the conservation of genetic diversity in eelgrass restoration efforts.


Assuntos
Conservação dos Recursos Naturais , DNA de Plantas , Variação Genética , Zosteraceae/genética , Genética Populacional , Repetições de Microssatélites
8.
PLoS One ; 7(6): e38397, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761681

RESUMO

Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actual large-scale seagrass restoration projects and demonstrated that a small increase in genetic diversity enhanced ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). In our experiment, plots with elevated genetic diversity had plants that survived longer, increased in density more quickly, and provided more ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). We used the number of alleles per locus as a measure of genetic diversity, which, unlike clonal diversity used in earlier research, can be applied to any organism. Additionally, unlike previous studies where positive impacts of diversity occurred only after a large disturbance, this study assessed the importance of diversity in response to potential environmental stresses (high temperature, low light) along a water-depth gradient. We found a positive impact of diversity along the entire depth gradient. Taken together, these results suggest that ecosystem restoration will significantly benefit from obtaining sources (transplants or seeds) with high genetic diversity and from restoration techniques that can maintain that genetic diversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Variação Genética , Sementes/genética , Zosteraceae/genética , Humanos , Sementes/química , Sementes/crescimento & desenvolvimento , Zosteraceae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...