Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38585923

RESUMO

Quality control (QC) assessment is a vital part of FMRI processing and analysis, and a typically under-discussed aspect of reproducibility. This includes checking datasets at their very earliest stages (acquisition and conversion) through their processing steps (e.g., alignment and motion correction) to regression modeling (correct stimuli, no collinearity, valid fits, enough degrees of freedom, etc.) for each subject. There are a wide variety of features to verify throughout any single subject processing pipeline, both quantitatively and qualitatively. We present several FMRI preprocessing QC features available in the AFNI toolbox, many of which are automatically generated by the pipeline-creation tool, afni_proc.py. These items include: a modular HTML document that covers full single subject processing from the raw data through statistical modeling; several review scripts in the results directory of processed data; and command line tools for identifying subjects with one or more quantitative properties across a group (such as triaging warnings, making exclusion criteria or creating informational tables). The HTML itself contains several buttons that efficiently facilitate interactive investigations into the data, when deeper checks are needed beyond the systematic images. The pages are linkable, so that users can evaluate individual items across a group, for increased sensitivity to differences (e.g., in alignment or regression modeling images). Finally, the QC document contains rating buttons for each "QC block", as well as comment fields for each, to facilitate both saving and sharing the evaluations. This increases the specificity of QC, as well as its shareability, as these files can be shared with others and potentially uploaded into repositories, promoting transparency and open science. We describe the features and applications of these QC tools for FMRI.

3.
Neuroimage ; 277: 120224, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327955

RESUMO

Typical fMRI analyses often assume a canonical hemodynamic response function (HRF) that primarily focuses on the peak height of the overshoot, neglecting other morphological aspects. Consequently, reported analyses often reduce the overall response curve to a single scalar value. In this study, we take a data-driven approach to HRF estimation at the whole-brain voxel level, without assuming a response profile at the individual level. We then employ a roughness penalty at the population level to estimate the response curve, aiming to enhance predictive accuracy, inferential efficiency, and cross-study reproducibility. By examining a fast event-related FMRI dataset, we demonstrate the shortcomings and information loss associated with adopting the canonical approach. Furthermore, we address the following key questions: 1) To what extent does the HRF shape vary across different regions, conditions, and participant groups? 2) Does the data-driven approach improve detection sensitivity compared to the canonical approach? 3) Can analyzing the HRF shape help validate the presence of an effect in conjunction with statistical evidence? 4) Does analyzing the HRF shape offer evidence for whole-brain response during a simple task?


Assuntos
Encéfalo , Hemodinâmica , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Hemodinâmica/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética
4.
Neuroimage ; 274: 120138, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116766

RESUMO

Most neuroimaging studies display results that represent only a tiny fraction of the collected data. While it is conventional to present "only the significant results" to the reader, here we suggest that this practice has several negative consequences for both reproducibility and understanding. This practice hides away most of the results of the dataset and leads to problems of selection bias and irreproducibility, both of which have been recognized as major issues in neuroimaging studies recently. Opaque, all-or-nothing thresholding, even if well-intentioned, places undue influence on arbitrary filter values, hinders clear communication of scientific results, wastes data, is antithetical to good scientific practice, and leads to conceptual inconsistencies. It is also inconsistent with the properties of the acquired data and the underlying biology being studied. Instead of presenting only a few statistically significant locations and hiding away the remaining results, studies should "highlight" the former while also showing as much as possible of the rest. This is distinct from but complementary to utilizing data sharing repositories: the initial presentation of results has an enormous impact on the interpretation of a study. We present practical examples and extensions of this approach for voxelwise, regionwise and cross-study analyses using publicly available data that was analyzed previously by 70 teams (NARPS; Botvinik-Nezer, et al., 2020), showing that it is possible to balance the goals of displaying a full set of results with providing the reader reasonably concise and "digestible" findings. In particular, the highlighting approach sheds useful light on the kind of variability present among the NARPS teams' results, which is primarily a varied strength of agreement rather than disagreement. Using a meta-analysis built on the informative "highlighting" approach shows this relative agreement, while one using the standard "hiding" approach does not. We describe how this simple but powerful change in practice-focusing on highlighting results, rather than hiding all but the strongest ones-can help address many large concerns within the field, or at least to provide more complete information about them. We include a list of practical suggestions for results reporting to improve reproducibility, cross-study comparisons and meta-analyses.


Assuntos
Neuroimagem , Humanos , Reprodutibilidade dos Testes , Viés , Viés de Seleção
5.
Elife ; 112022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317867

RESUMO

Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.


Assuntos
Aprendizagem Baseada em Problemas , Reversão de Aprendizagem , Humanos , Encéfalo/fisiologia , Condicionamento Clássico , Dor , Imageamento por Ressonância Magnética , Mapeamento Encefálico
6.
Front Neurosci ; 16: 1073800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793774

RESUMO

Quality control (QC) is a necessary, but often an under-appreciated, part of FMRI processing. Here we describe procedures for performing QC on acquired or publicly available FMRI datasets using the widely used AFNI software package. This work is part of the Research Topic, "Demonstrating Quality Control (QC) Procedures in fMRI." We used a sequential, hierarchical approach that contained the following major stages: (1) GTKYD (getting to know your data, esp. its basic acquisition properties), (2) APQUANT (examining quantifiable measures, with thresholds), (3) APQUAL (viewing qualitative images, graphs, and other information in systematic HTML reports) and (4) GUI (checking features interactively with a graphical user interface); and for task data, and (5) STIM (checking stimulus event timing statistics). We describe how these are complementary and reinforce each other to help researchers stay close to their data. We processed and evaluated the provided, publicly available resting state data collections (7 groups, 139 total subjects) and task-based data collection (1 group, 30 subjects). As specified within the Topic guidelines, each subject's dataset was placed into one of three categories: Include, exclude or uncertain. The main focus of this paper, however, is the detailed description of QC procedures: How to understand the contents of an FMRI dataset, to check its contents for appropriateness, to verify processing steps, and to examine potential quality issues. Scripts for the processing and analysis are freely available.

7.
Front Neurol ; 12: 659002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262518

RESUMO

Object: A real-time functional magnetic resonance imaging (fMRI) feedback during ventral intermediate nucleus (VIM) deep brain stimulation (DBS) under general anesthesia (or "asleep" DBS) does not exist. We hypothesized that it was feasible to acquire a reliable and responsive fMRI during asleep VIM DBS surgery. Methods: We prospectively enrolled 10 consecutive patients who underwent asleep DBS for the treatment of medication-refractory essential tremor. Under general anesthesia, we acquired resting-state functional MRI immediately before and after the cannula insertion. Reliability was determined by a temporal signal-to-noise-ratio >100. Responsiveness was determined based on the fMRI signal change upon insertion of the cannula to the VIM. Results: It was feasible to acquire reliable fMRI during asleep DBS surgery. The fMRI signal was responsive to the brain cannula insertion, revealing a reduction in the tremor network's functional connectivity, which did not reach statistical significance in the group analysis. Conclusions: It is feasible to acquire a reliable and responsive fMRI signal during asleep DBS. The acquisition steps and the preprocessing pipeline developed in these experiments will be useful for future investigations to develop fMRI-based feedback for asleep DBS surgery.

8.
Neuroimage ; 237: 118091, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33991698

RESUMO

High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Software , Neuroimagem Funcional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
9.
Dev Psychobiol ; 63(5): 1241-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462834

RESUMO

Irritability is impairing and prevalent across pediatric psychiatric disorders and typical development, yet its neural mechanisms are largely unknown. This study evaluated the relation between adolescent irritability and reward-related brain function as a candidate neural mechanism. Adolescents from intervention-seeking families in the community (N = 52; mean age = 13.80, SD = 1.94) completed a monetary incentive delay task to assess reward anticipation and feedback (reward receipt and omission) during fMRI acquisition. Whole-brain analyses, controlling for age, examined brain activation and striatal and amygdala connectivity in relation to irritability. Irritability was measured using the parent- and youth-reported Affective Reactivity Index. Irritability was associated with altered reward processing-related activation and connectivity in multiple networks during reward anticipation and feedback, including increased striatal activation and altered ventral striatum connectivity with prefrontal areas. Our findings suggest that irritability is associated with altered neural patterns during reward processing and that aberrant prefrontal cortex-mediated top-down control may be related to irritability. These findings inform our understanding of the etiology of youth irritability and the development of mechanism-based interventions.


Assuntos
Encéfalo , Recompensa , Adolescente , Mapeamento Encefálico , Criança , Humanos , Imageamento por Ressonância Magnética , Motivação
10.
Front Neuroinform ; 14: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528270

RESUMO

Knowing the difference between left and right is generally assumed throughout the brain MRI research community. However, we note widespread occurrences of left-right orientation errors in MRI open database repositories where volumes have contained systematic left-right flips between subject EPIs and anatomicals, due to having incorrect or missing file header information. Here we present a simple method in AFNI for determining the consistency of left and right within a pair of acquired volumes for a particular subject; the presence of EPI-anatomical inconsistency, for example, is a sign that dataset header information likely requires correction. The method contains both a quantitative evaluation as well as a visualizable verification. We test the functionality using publicly available datasets. Left-right flipping is not immediately obvious in most cases, so we also present visualization methods for looking at this problem (and other potential problems), using examples from both FMRI and DTI datasets.

11.
Comput Biol Med ; 120: 103742, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421647

RESUMO

Image quality control (QC) is a critical and computationally intensive component of functional magnetic resonance imaging (fMRI). Artifacts caused by physiologic signals or hardware malfunctions are usually identified and removed during data processing offline, well after scanning sessions are complete. A system with the computational efficiency to identify and remove artifacts during image acquisition would permit rapid adjustment of protocols as issues arise during experiments. To improve the speed and accuracy of QC and functional image correction, we developed Fast Anatomy-Based Image Correction (Fast ANATICOR) with newly implemented nuisance models and an improved pipeline. We validated its performance on a dataset consisting of normal scans and scans containing known hardware-driven artifacts. Fast ANATICOR's increased processing speed may make real-time QC and image correction feasible as compared with the existing offline method.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Controle de Qualidade
12.
Hum Brain Mapp ; 41(11): 3133-3146, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32329951

RESUMO

We compared resting state (RS) functional connectivity and task-based fMRI to lateralize language dominance in 30 epilepsy patients (mean age = 33; SD = 11; 12 female), a measure used for presurgical planning. Language laterality index (LI) was calculated from task fMRI in frontal, temporal, and frontal + temporal regional masks using LI bootstrap method from SPM12. RS language LI was assessed using two novel methods of calculating RS language LI from bilateral Broca's area seed based connectivity maps across regional masks and multiple thresholds (p < .05, p < .01, p < .001, top 10% connections). We compared LI from task and RS fMRI continuous values and dominance classifications. We found significant positive correlations between task LI and RS LI when functional connectivity thresholds were set to the top 10% of connections. Concordance of dominance classifications ranged from 20% to 30% for the intrahemispheric resting state LI method and 50% to 63% for the resting state LI intra- minus interhemispheric difference method. Approximately 40% of patients left dominant on task showed RS bilateral dominance. There was no difference in LI concordance between patients with right-sided and left-sided resections. Early seizure onset (<6 years old) was not associated with atypical language dominance during task-based or RS fMRI. While a relationship between task LI and RS LI exists in patients with epilepsy, language dominance is less lateralized on RS than task fMRI. Concordance of language dominance classifications between task and resting state fMRI depends on brain regions surveyed and RS LI calculation method.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Lateralidade Funcional/fisiologia , Idioma , Rede Nervosa/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Cuidados Pré-Operatórios , Adulto Jovem
13.
Bipolar Disord ; 21(4): 309-320, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851221

RESUMO

OBJECTIVES: Little is known about potential differences in the pathophysiology of bipolar disorder (BD) across development. The present study aimed to characterize age-related neural mechanisms of BD. METHODS: Youths and adults with and without BD (N = 108, age range = 9.8-55.9 years) completed an emotional face labeling task during fMRI acquisition. We leveraged three different fMRI analytic tools to identify age-related neural mechanisms of BD, investigating (a) change in neural responses over the course of the task, (b) neural activation averaged across the entire task, and (c) amygdala functional connectivity. RESULTS: We found converging Age Group × Diagnosis patterns across all three analytic methods. Compared to healthy youths vs adults, youths vs adults with BD show an altered pattern in response to repeated presentation of emotional faces in medial prefrontal, amygdala, and temporoparietal regions, as well as amygdala-temporoparietal connectivity. Specifically, medial prefrontal and lingual activation decreases over the course of repeated emotional face presentations in healthy youths vs adults but increases in youths with BD compared to adults with BD. Moreover, youths vs adults with BD show less medial prefrontal activation and amygdala-temporoparietal junction connectivity averaged over the task, but this difference is not found for healthy youths vs adults. CONCLUSION: Although longitudinal confirmation and replication will be necessary, these findings suggest that neural development may be aberrant in BD and that some neural mechanisms mediating BD may differ in adults vs children with the illness.


Assuntos
Conectoma/métodos , Emoções/fisiologia , Expressão Facial , Fatores Etários , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Transtorno Bipolar/psicologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
14.
Am J Psychiatry ; 176(1): 67-76, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336704

RESUMO

OBJECTIVE: Childhood irritability is a common, impairing problem with changing age-related manifestations that predict long-term adverse outcomes. However, more investigation of overall and age-specific neural correlates is needed. Because youths with irritability exhibit exaggerated responses to frustrating stimuli, the authors used a frustration functional MRI (fMRI) paradigm to examine associations between irritability and neural activation and tested the moderating effect of age. METHOD: The authors studied a transdiagnostic sample of 195 youths with varying levels of irritability (disruptive mood dysregulation disorder, N=52; anxiety disorder, N=42; attention deficit hyperactivity disorder, N=40; and healthy volunteers, N=61). Irritability was measured by parent and child reports on the Affective Reactivity Index. The fMRI paradigm was a cued-attention task differentiating neural activity in response to frustration (rigged feedback) from activity during attention orienting in the trial following frustration. RESULTS: Whole-brain activation analyses revealed associations with irritability during attention orienting following frustration. Irritability was positively associated with frontal-striatal activation, specifically in the dorsolateral prefrontal cortex, inferior frontal gyrus, and caudate. Age moderated the association between irritability and activation in some frontal and posterior regions (the anterior cingulate cortex, medial frontal gyrus, cuneus, precuneus, and superior parietal lobule [F=19.04-28.51, df=1, 189, partial eta squared=0.09-0.13]). Specifically, higher irritability was more strongly related to increased activation in younger youths compared with older youths. CONCLUSIONS: Following frustration, levels of irritability correlated with activity in neural systems mediating attention orienting, top-down regulation of emotions, and motor execution. Although most associations were independent of age, dysfunction in the anterior cingulate cortex and posterior regions was more pronounced in young children with irritability.


Assuntos
Atenção/fisiologia , Encéfalo , Frustração , Humor Irritável/fisiologia , Imageamento por Ressonância Magnética/métodos , Transtornos do Neurodesenvolvimento , Técnicas Psicológicas , Psicotrópicos/uso terapêutico , Adolescente , Fatores Etários , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Criança , Feminino , Humanos , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/fisiopatologia , Transtornos do Neurodesenvolvimento/psicologia , Transtornos do Neurodesenvolvimento/terapia
15.
Hum Brain Mapp ; 40(3): 1037-1043, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30265768

RESUMO

One-sided t-tests are widely used in neuroimaging data analysis. While such a test may be applicable when investigating specific regions and prior information about directionality is present, we argue here that it is often mis-applied, with severe consequences for false positive rate (FPR) control. Conceptually, a pair of one-sided t-tests conducted in tandem (e.g., to test separately for both positive and negative effects), effectively amounts to a two-sided t-test. However, replacing the two-sided test with a pair of one-sided tests without multiple comparisons correction essentially doubles the intended FPR of statements made about the same study; that is, the actual family-wise error (FWE) of results at the whole brain level would be 10% instead of the 5% intended by the researcher. Therefore, we strongly recommend that, unless otherwise explicitly justified, two-sided t-tests be applied instead of two simultaneous one-sided t-tests.


Assuntos
Interpretação Estatística de Dados , Reações Falso-Positivas , Neuroimagem/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos
16.
Hum Brain Mapp ; 39(12): 4893-4902, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30052318

RESUMO

We measured and compared heritability estimates for measures of functional brain connectivity extracted using the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) rsfMRI analysis pipeline in two cohorts: the genetics of brain structure (GOBS) cohort and the HCP (the Human Connectome Project) cohort. These two cohorts were assessed using conventional (GOBS) and advanced (HCP) rsfMRI protocols, offering a test case for harmonization of rsfMRI phenotypes, and to determine measures that show consistent heritability for in-depth genome-wide analysis. The GOBS cohort consisted of 334 Mexican-American individuals (124M/210F, average age = 47.9 ± 13.2 years) from 29 extended pedigrees (average family size = 9 people; range 5-32). The GOBS rsfMRI data was collected using a 7.5-min acquisition sequence (spatial resolution = 1.72 × 1.72 × 3 mm3 ). The HCP cohort consisted of 518 twins and family members (240M/278F; average age = 28.7 ± 3.7 years). rsfMRI data was collected using 28.8-min sequence (spatial resolution = 2 × 2 × 2 mm3 ). We used the single-modality ENIGMA rsfMRI preprocessing pipeline to estimate heritability values for measures from eight major functional networks, using (1) seed-based connectivity and (2) dual regression approaches. We observed significant heritability (h2 = 0.2-0.4, p < .05) for functional connections from seven networks across both cohorts, with a significant positive correlation between heritability estimates across two cohorts. The similarity in heritability estimates for resting state connectivity measurements suggests that the additive genetic contribution to functional connectivity is robustly detectable across populations and imaging acquisition parameters. The overarching genetic influence, and means to consistently detect it, provides an opportunity to define a common genetic search space for future gene discovery studies.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Hereditariedade/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Fenótipo , Adulto , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Família , Feminino , Humanos , Masculino , Americanos Mexicanos , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Gêmeos , Adulto Jovem
17.
J Neurosci ; 38(9): 2294-2303, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29382711

RESUMO

A fundamental feature of cortical visual processing is the separation of visual processing for the upper and lower visual fields. In early visual cortex (EVC), the upper visual field is processed ventrally, with the lower visual field processed dorsally. This distinction persists into several category-selective regions of occipitotemporal cortex, with ventral and lateral scene-, face-, and object-selective regions biased for the upper and lower visual fields, respectively. Here, using an elliptical population receptive field (pRF) model, we systematically tested the sampling of visual space within ventral and dorsal divisions of human EVC in both male and female participants. We found that (1) pRFs tend to be elliptical and oriented toward the fovea with distinct angular distributions for ventral and dorsal divisions of EVC, potentially reflecting a radial bias; and (2) pRFs in ventral areas were larger (∼1.5×) and more elliptical (∼1.2×) than those in dorsal areas. These differences potentially reflect a tendency for receptive fields in ventral temporal cortex to overlap the fovea with less emphasis on precise localization and isotropic representation of space compared with dorsal areas. Collectively, these findings suggest that ventral and dorsal divisions of EVC sample visual space differently, likely contributing to and/or stemming from the functional differentiation of visual processing observed in higher-level regions of the ventral and dorsal cortical visual pathways.SIGNIFICANCE STATEMENT The processing of visual information from the upper and lower visual fields is separated in visual cortex. Although ventral and dorsal divisions of early visual cortex (EVC) are commonly assumed to sample visual space equivalently, we demonstrate systematic differences using an elliptical population receptive field (pRF) model. Specifically, we demonstrate that (1) ventral and dorsal divisions of EVC exhibit diverging distributions of pRF angle, which are biased toward the fovea; and (2) ventral pRFs exhibit higher aspect ratios and cover larger areas than dorsal pRFs. These results suggest that ventral and dorsal divisions of EVC sample visual space differently and that such differential sampling likely contributes to different functional roles attributed to the ventral and dorsal pathways, such as object recognition and visually guided attention, respectively.


Assuntos
Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
18.
Pac Symp Biocomput ; 23: 307-318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218892

RESUMO

Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.


Assuntos
Neuroimagem Funcional/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Biologia Computacional/métodos , Conectoma/estatística & dados numéricos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Análise de Componente Principal , Análise de Regressão , Razão Sinal-Ruído , Software
19.
PLoS One ; 12(10): e0185552, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973000

RESUMO

INTRODUCTION: Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. MATERIALS AND METHODS: Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). RESULTS: Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). DISCUSSION: TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making.


Assuntos
Modelos Teóricos , Acidente Vascular Cerebral/diagnóstico por imagem , Automação , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Acidente Vascular Cerebral/fisiopatologia
20.
Brain Connect ; 7(3): 152-171, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398812

RESUMO

Recent reports of inflated false-positive rates (FPRs) in FMRI group analysis tools by Eklund and associates in 2016 have become a large topic within (and outside) neuroimaging. They concluded that existing parametric methods for determining statistically significant clusters had greatly inflated FPRs ("up to 70%," mainly due to the faulty assumption that the noise spatial autocorrelation function is Gaussian shaped and stationary), calling into question potentially "countless" previous results; in contrast, nonparametric methods, such as their approach, accurately reflected nominal 5% FPRs. They also stated that AFNI showed "particularly high" FPRs compared to other software, largely due to a bug in 3dClustSim. We comment on these points using their own results and figures and by repeating some of their simulations. Briefly, while parametric methods show some FPR inflation in those tests (and assumptions of Gaussian-shaped spatial smoothness also appear to be generally incorrect), their emphasis on reporting the single worst result from thousands of simulation cases greatly exaggerated the scale of the problem. Importantly, FPR statistics depends on "task" paradigm and voxelwise p value threshold; as such, we show how results of their study provide useful suggestions for FMRI study design and analysis, rather than simply a catastrophic downgrading of the field's earlier results. Regarding AFNI (which we maintain), 3dClustSim's bug effect was greatly overstated-their own results show that AFNI results were not "particularly" worse than others. We describe further updates in AFNI for characterizing spatial smoothness more appropriately (greatly reducing FPRs, although some remain >5%); in addition, we outline two newly implemented permutation/randomization-based approaches producing FPRs clustered much more tightly about 5% for voxelwise p ≤ 0.01.


Assuntos
Reações Falso-Positivas , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Análise por Conglomerados , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...