Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 95(1): 242-50, 1991 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16667959

RESUMO

The H(+)/ATP stoichiometry was determined for the plasma membrane H(+)-ATPase from red beet (Beta vulgaris L., var Detroit Dark Red) storage tissue associated with native vesicles. The determination of H(+)/ATP stoichiometry utilized a kinetic approach where rates of H(+) influx, estimated by three different methods, were compared to rates of ATP hydrolysis measured by the coupled enzyme assay under identical conditions. These methods for estimating H(+) influx were based upon either determining the initial rate of alkalinization of the external medium from pH 6.13, measuring the rate of vesicle H(+) leakage from a steadystate pH gradient after stopping the H(+)-ATPase or utilizing a mathematical model which describes the net transport of H(+) at any given point in time. When the rate of H(+) influx estimated by each of these methods was compared to the rate of ATP hydrolysis, a H(+)/ATP stoichiometry of about 1 was observed. In consideration of the maximum free energy available from ATP hydrolysis (DeltaG(atp)), this value for H(+)/ATP stoichiometry is sufficient to account for the magnitude of the proton electrochemical gradient observed across the plasma membrane in vivo.

2.
Plant Physiol ; 90(2): 394-7, 1989 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16666782

RESUMO

The plasma membrane ATPase from red beet (Beta vulgaris L.) storage tissue associated with either native plasma membrane vesicles, a detergent-solubilized enzyme preparation or reconstituted liposomes was subjected to radiation inactivation analysis to determine if changes in target molecular size occurred with modification of its amphipathic environment. For each preparation of the enzyme, the decline in ATP hydrolytic activity with increasing dose of gamma-ray radiation demonstrated a simple exponential profile indicating the presence of a single target size. Analysis of the radiation inactivation profiles for the plasma membrane associated, solubilized, and reconstituted enzyme revealed target molecular sizes of 225 kilodaltons (kD), 129 kD, and 218 kD, respectively. These results suggest that the plasma membrane associated and reconstituted ATPase preparations consist of enzyme present as a dimer of 100 kD subunits while the solubilized enzyme is present in the monomeric form. These results also indicate that the 100 kD catalytic subunit most likely represents the minimal unit of ATP hydrolytic activity.

3.
Plant Physiol ; 85(4): 1129-36, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16665816

RESUMO

Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...