Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Amino Acids ; 55(4): 469-479, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36695918

RESUMO

Laccase is a versatile enzyme widely used for the oxidation of environmental contaminants and exhibits great potential in many others applications; however, it undergoes photo-degradation when irradiated with UVB light. The photo-stability of this biomolecule can be improved by immobilization in different encapsulation media and reverse micelles have been employed with this purpose. The laccase activity using syringaldazine as substrate has been studied in the absence and in the presence of reverse micelles of 0.15 M of sodium 1,4-bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane at W0 ([H2O]/[AOT]) = 30, before and after irradiation of the enzyme with UVB light. The kinetic parameters, i.e., Michaelis-Menten constant (KM), catalytic constant (kCAT), and catalytic efficiency (kCAT/KM), were determined by spectroscopic measurements in the micellar system and in homogeneous aqueous medium. The distribution of the substrate in two pseudo-phases (micelle and organic solvent) was taking into account in the kinetic parameters' determinations. The results obtained indicate that the nano-aggregate system confers a solubilization media in the water core of the micelle, both for the enzyme and the substrate, in which the catalytic function of the enzyme is preserved. On the other hand, in homogeneous aqueous medium kCAT/KM value, it is reduced by ~50% after UVB irradiation of the enzyme, while in micellar medium, less than 10% of the activity was affected. This mean that the enzyme achieves a considerably photo-protection when it is irradiated with UVB light in reverse micelles as compared with the homogeneous aqueous medium. This phenomenon can be mainly due to the confinement of the biomolecule inside the micelle. Physical properties of the nano-environment could affect photochemical reactions.


Assuntos
Lacase , Micelas , Raios Ultravioleta , Água/química , Solventes , Cinética
2.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641420

RESUMO

New porphyrin-Schiff base conjugates bearing one (6) and two (7) basic amino groups were synthesized by condensation between tetrapyrrolic macrocycle-containing amine functions and 4-(3-(N,N-dimethylamino)propoxy)benzaldehyde. This approach allowed us to easily obtain porphyrins substituted by positive charge precursor groups in aqueous media. These compounds showed the typical Soret and four Q absorption bands with red fluorescence emission (ΦF ~ 0.12) in N,N-dimethylformamide. Porphyrins 6 and 7 photosensitized the generation of O2(1Δg) (ΦΔ ~ 0.44) and the photo-oxidation of L-tryptophan. The decomposition of this amino acid was mainly mediated by a type II photoprocess. Moreover, the addition of KI strongly quenched the photodynamic action through a reaction with O2(1Δg) to produce iodine. The photodynamic inactivation capacity induced by porphyrins 6 and 7 was evaluated in Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the photoinactivation of these microorganisms was improved using potentiation with iodide anions. These porphyrins containing basic aliphatic amino groups can be protonated in biological systems, which provides an amphiphilic character to the tetrapyrrolic macrocycle. This effect allows one to increase the interaction with the cell wall, thus improving photocytotoxic activity against microorganisms.


Assuntos
Aminoácidos Básicos/química , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Porfirinas/química , Bases de Schiff/farmacologia , Anti-Infecciosos/química , Antifúngicos/química , Bases de Schiff/química
3.
J Photochem Photobiol B ; 225: 112321, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695700

RESUMO

Two novels structurally related pyrrolidine-fused chlorins were synthesized from 5,10,15,20-tetrakis(pentafluorophenyl)chlorin by nucleophilic aromatic substitution of the para-fluoro groups. The reaction with 2-dimethylaminoethanol produced TPCF16-NMe2 in 77% yield, while TPCF16-NBu was obtained using butylamine in 87% yield. The latter was extensively methylated to form TPCF16-N+Bu in 92% yield. The synthetic strategy was designed to compare the effect of charge density distribution on chlorin in the efficacy to induce photodynamic inactivation of pathogens. TPCF16-NMe2 has five tertiary amines that can acquire positive charges in aqueous medium by protonation. Furthermore, four of the cationic groups are located in amino groups linked to the chlorine macrocycle by an aliphatic structure of two carbon atoms, which gives it greater movement capacity. In contrast, TPCF16-N+Bu presents intrinsic positive charges on aromatic rings. Absorption and fluorescence emission properties were not affected by the peripheral substitution on the chlorin macrocycle. Both photosensitizers (PSs) were able to form singlet molecular oxygen and superoxide anion radical in solution. Uptake and photodynamic inactivation mediated by these chlorins were examined on Staphylococcus aureus and Escherichia coli. Both phototherapeutic agents produced efficient photoinactivation of S. aureus. However, only TPCF16-NMe2 was rapidly bound to E. coli cells and this chlorin was effective to photoinactivate both strains of bacteria using lower concentrations and shorter irradiation periods. Our outcomes reveal that the charge density distribution is a key factor to consider in the development of new PSs. Accordingly, this work stands out as a promising starting point for the design of new tetrapyrrolic macrocycles with application in PDI.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Pirrolidinas/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Transporte Biológico , Testes de Sensibilidade Microbiana , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/química , Porfirinas/metabolismo
4.
RSC Adv ; 11(38): 23519-23532, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479802

RESUMO

A photostable and photodynamic antimicrobial surface was successfully obtained and applied to photoinactivate microorganisms. This approach was based on the synthesis of a fullerene C60 derivative (EDOT-C60) where fullerene C60 is covalently linked to 3,4-ethylenedioxythiophene (EDOT) through a 1,3-dipolar cycloaddition reaction. This dual-functional monomer bears an EDOT center connected via an alkyl chain to a fullerene C60 moiety. In this structure, EDOT acts as an electropolymerizable unit that allows the film formation over conducting substrates, while fullerene C60 performs the photodynamic antimicrobial activity. Electrochemical polymerization of EDOT was used to obtain stable and photodynamic polymeric films (PEDOT-C60) in a controllable procedure. Cyclic voltammetry and UV-visible spectroscopy studies showed that the fullerene C60 units were not altered during the electropolymerization process, obtaining surfaces with high fullerene content. Photobleaching measurements demonstrated that the electropolymerized films were highly photostable. Moreover, photodynamic properties of PEDOT-C60 were compared with fullerene C60 and showed that electrodeposited films were able to generate reactive oxygen species (ROS) through the two photomechanisms, producing singlet molecular oxygen (type II) and superoxide radical anion (type I). All studies demonstrated that fullerene C60 moieties covalently attached to the polymeric matrix mainly conserve the photodynamic characteristics. Hence, photodynamic action sensitized by PEDOT-C60 was assessed in vitro against Staphylococcus aureus. The photosensitized inactivation by the electropolymerized films on bacteria suspensions produced >99.9% reduction in S. aureus survival. Fluorescence microscopy experiments with S. aureus adhered to the PEDOT-C60 surface showed a complete microbe annihilation. Also, the eradication of biofilms formed on PEDOT-C60 surfaces resulted in a photokilling >99.9% after visible light irradiation. Our results demonstrated that these antimicrobial photodynamic polymeric films are a promising and versatile platform to photoinactivate microorganisms and to obtain photostable self-sterilizing surfaces.

5.
Amino Acids ; 52(6-7): 925-939, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556742

RESUMO

The multi-copper Laccase enzyme corresponds to one of the most investigated oxidoreductases for potential uses in xenobiotic bioremediation. In this work, we have investigated the photo-degradation process of Laccase from Trametesversicolor induced by UVB light and the influence on its activity over selected substrates. Laccase undergoes photo-degradation when irradiated with UVB light, and the process depends on the presence of oxygen in the medium. With the kinetic data obtained from stationary and time resolved measurements, a photo-degradation mechanism of auto-sensitization was proposed for the enzyme. Laccase generates singlet oxygen, by UVB light absorption, and this reactive oxygen species can trigger the photo-oxidation of susceptible amino acids residues present in the protein structure. The catalytic activity of Laccase was evaluated before and after UVB photolysis over hydroxy-aromatic compounds and substituted phenols which represent potential pollutants. The dye bromothymol blue, the antibiotic rifampicin and the model compound syringaldazine, were selected as substrates. The values of the kinetic parameters determined in our experiments indicate that the photo-oxidative process of Laccase has a very negative impact on its overall catalytic function. Despite this, we have not found evidence of structural damage by SDS-PAGE and circular dichroism experiments, which indicate that the enzyme retained its secondary structure. We believe that, given the importance of Laccase in environmental bioremediation, the information found about the stability of this kind of biomolecule exposed to UV solar irradiation may be relevant in the technological design and/or optimization of decontamination strategies.


Assuntos
Biodegradação Ambiental/efeitos da radiação , Poluentes Ambientais , Lacase/metabolismo , Lacase/efeitos da radiação , Absorção de Radiação , Dicroísmo Circular/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Fluorescência , Oxirredução , Fotólise
6.
J Basic Microbiol ; 60(8): 679-690, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32378234

RESUMO

Bacillus sp. SFC 500-1E, a bacterial strain isolated from tannery sediments, is able to remove Cr(VI) and simultaneously tolerate high concentrations of phenol. In this study, we used high-resolution microscopies, fluorescence polarization techniques, and several biochemical approaches to improve our understanding about the adaptive mechanisms of this strain to survive in the presence of Cr(VI) and phenol, both individually and simultaneously. Among adaptive strategies developed by Bacillus sp. SFC 500-1E, an increase in bacterial size, such as length, width, and height, and ultrastructural alterations, such as electron-dense precipitates, the presence of exopolymers, and cell lysis, are noteworthy. The exopolymers observed were consistent with the extensive biofilm formation and exopolysaccharides and extracellular protein quantification. At the cell membrane level, a rapid rigidity was induced in Cr(VI) + phenol treatment. This effect was counteracted after 16 h by changes at the level of phospholipids, mainly in the composition of fatty acids (FAs); in particular, an increase in the unsaturated fatty acid/saturated fatty acid ratio was detected. This study shows evidence of some adaptive responses displayed by Bacillus sp. SFC 500-1E, which allows it to survive in stressful conditions.


Assuntos
Bacillus/citologia , Bacillus/efeitos dos fármacos , Cromo/farmacologia , Fenol/farmacologia , Bacillus/metabolismo , Biodegradação Ambiental , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Cromo/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Ácidos Graxos/química , Fosfolipídeos/química , Estresse Fisiológico
7.
Photodermatol Photoimmunol Photomed ; 35(5): 322-331, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31006166

RESUMO

OBJECTIVE: The goal of this work was to investigate the photodynamic activity of 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) and zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine iodide (ZnPPc4+ ) as photosensitizers to inactivate Staphylococcus aureus biofilms and prevent their formations in different culture media. METHODS: We incubated S aureus biofilms in different culture media: tryptic soy (TS), nutrient (N), Müeller Hinton (MH) broth, TS with glucose 2 and 5% (w/v) with 5 µM ZnPPc4+ or TAPC and irradiated with visible light (350-800 nm). Photodynamic inactivation (PDI) was determined by count of colony forming units (CFU) and crystal violet method. Furthermore, we studied PDI effect on biofilm development in TS broth. Finally, we examined the effects of PDI on the structure of S aureus biofilm. RESULTS: Greater inactivation was achieved, using TAPC or ZnPPc4+ , when S aureus biofilm was grown in N or MH broths rather than in TS. Besides, glucose addition to the medium decreases the ability to develop biofilm and increase the photoinactivation capacity. Prevention of 3 log biofilm developments was obtained when S aureus cultures were treated with TAPC (10 µM) and 108 J/cm2 in TS broth and the number of CFU was counted after 24 hours. Moreover, microscopy studies demonstrated modifications in biofilm architecture. CONCLUSIONS: These results indicate that TAPC and ZnPPc4+ may be promising photosensitizers for photodynamic inactivation of S aureus biofilms or to prevent their formation.


Assuntos
Biofilmes , Indóis/farmacologia , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Staphylococcus aureus/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Humanos , Isoindóis
8.
Luminescence ; 34(3): 324-333, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30740864

RESUMO

Photosensitized oxidation of bovine serum albumin (BSA), by using perinaphtenone as a sensitizer, has been studied at pH 7.4 and 11. The selected sensitizer does not present ground-state complexation with BSA and ensures that the mechanism is mediated by O2 (1 △g ). Strong dependence between BSA-O2 (1 △g ) photo-oxidation and the pH of the medium has been found. The relative oxygen uptake rate (v- â–³ O2 ) and the total quenching rate constant (kt ) values are higher at pH 11 than pH 7.4. The enhancement in the alkaline condition is due to conformational changes in the protein and the reactivity of tyrosinate anion with O2 (1 △g ). Even when the tendency with the pH in the presence of sodium dodecyl sulfate (SDS) micelles is similar to that observed in homogeneous media, an increment on the kt value is detected. This effect may be attributable to the strong interaction of BSA-SDS, which leads to the protein unfolding and could leave more exposed photo-oxidizable amino acids. A protective effect against the O2 (1 △g )-mediated photo-oxidation was observed in reverse micelles (RMs) of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) by comparing the kt values obtained at W = 10 with respect to the one obtain in homogeneous media. The latter could be mainly explained by the modification in the solvent polarity. Also, another important observation was found, the internal pH inside RMs of AOT sensed through tyrosine absorption was independent of the one used for the formation of the water pool. Hence, the kt values observed at both pH, are quite similar.


Assuntos
Soroalbumina Bovina/química , Concentração de Íons de Hidrogênio , Cinética , Luz , Micelas , Oxirredução/efeitos da radiação , Processos Fotoquímicos , Dodecilsulfato de Sódio/química
9.
Photodiagnosis Photodyn Ther ; 23: 261-269, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29964223

RESUMO

Silica nanoparticles (SiNPs) embedded with Zn(II) 2,9,16,23-tetrakis(methoxy)phthalocyanine (SiNPZnPcOCH3), Zn(II) 2,9,16,23-tetrakis(4-pyridyloxy) phthalocyanine (SiNPZnPcOPy) and Zn(II) 2,9,16,23-tetrakis(t-butyl) phthalocyanine (SiNPZnPctBu) were synthesized in the nonpolar core of AOT/1-butanol/water micelles using triethoxyvinylsilane and 3-aminopropyltriethoxysilane. These SiNPs-Pc presented an average diameter of about 20-25 nm. UV-vis absorption spectra presented the characteristic Soret and Q bands of phthalocyanines embedded into the nanoparticles. Moreover, red fluorescence emission of SiNPs bearing phthalocyanines was detected in water. The SiNPs-Pc produced the photodecomposition of 2,2'-(anthracene-9,10-diyl)bis(methylmalonic acid), which was used to sense the singlet molecular oxygen O2(1Δg) generation in aqueous medium. Also, the formation of superoxide anion radical was detected by nitro blue tetrazolium reduction in the presence of NADH. Photoinactivation of microorganisms was investigated in Staphylococcus aureus and Candida albicans. In vitro experiments showed that photosensitized inactivation induced by SiNPZnPcOCH3 and SiNPZnPctBu improved with an increase of irradiation times. After 30 min irradiation, over 7 log reduction was found for S. aureus. Also, these SiNPs-Pc produced a decrease of 2.5 log in C. albicans after 60 min irradiation. In both cases, a lower photoinactivation activity was found for SiNPZnPcOPy. Studies of photodynamic action mechanism showed that the photokilling of microbial cells was protected in the presence of sodium azide and diazabicyclo[2.2.2]octane. Also, a reduction on the cell photodamage was found with the addition of D-mannitol. Therefore, the photodynamic activity sensitized by SiNPZnPcOCH3 and SiNPZnPctBu in microbial cells was mediated by a contribution of both type I and type II photooxidative mechanisms. Thus, silica nanoparticles are interesting materials to vehicle ZnPcOCH3 and ZnPctBu in aqueous media to photoeradicate microorganisms.


Assuntos
Indóis/farmacologia , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Dióxido de Silício/química , Candida albicans/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Escherichia coli/efeitos dos fármacos , Indóis/administração & dosagem , Indóis/análise , Isoindóis , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Superóxidos/metabolismo
10.
Photochem Photobiol Sci ; 16(11): 1717-1726, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29072760

RESUMO

The use of biologically active substances with anti-inflammatory properties such as corticosteroids has increased considerably in the last few decades. Particularly, the compound we are interested in, prednisolone (Predn), is a glucocorticoid with high biological activity. This compound absorbs UV radiation and may participate in photochemical processes, which can result in its own decomposition. These processes could result in the formation of free radicals or reactive oxygen species (ROS). On these grounds, the kinetic and mechanistic aspects of the direct photodegradation of Predn have been studied in aqueous medium under different atmospheric conditions by stationary and time-resolved techniques. The mechanism involved in the photodegradation has been elucidated. Predn is capable of generating the excited triplet state 3Predn* as a result of UVB light absorption. In the presence of oxygen, 3Predn* allows the formation of ROS, of which O2(1Δg) (ΦΔ = 0.014), H2O2 and the radical OH˙ stand out. The latter is generated from the spontaneous dismutation of O2˙- and subsequent homolytic cleavage, photochemically promoted, of H2O2. Predn undergoes unimolecular photodegradation reactions under an inert argon atmosphere. In this study we found that in the presence of oxygen, the Predn photo-consumption is improved. This implies that the attack by ROS involves a very important additional contribution to the photodegradation of Predn under aerobic conditions.

11.
Photochem Photobiol Sci ; 16(10): 1524-1536, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28836645

RESUMO

The photodynamic inactivation mediated by 1,3,5,7-tetramethyl-8-[4-(N,N,N-trimethylamino)phenyl]-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 3 and 8-[4-(3-(N,N,N-trimethylamino)propoxy)phenyl]-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 4 was investigated on Staphylococcus aureus, Escherichia coli and Candida albicans. In vitro experiments indicated that BODIPYs 3 and 4 were rapidly bound to microbial cells at short incubation periods. Also, fluorescence microscopy images showed green emission of BODIPYs bound to microbial cells. Photosensitized inactivation improved with an increase of the irradiation time. Similar photoinactivation activities were found for both BODIPYs in bacteria. The photoinactivation induced by these BODIPYs was effective for both bacteria. However, the Gram-positive bacterium was inactivated sooner and with a lower concentration of a photosensitizer than the Gram-negative bacterium. After 15 min irradiation, the complete eradication of S. aureus was obtained with 1 µM photosensitizer. A reduction of 4.5 log in the E. coli viability was found when using 5 µM photosensitizer and 30 min irradiation. Also, the last conditions produced a decrease of 4.5 log in C. albicans cells treated with BODIPY 3, while 4 was poorly effective. On the other hand, the effect of the addition of KI on photoinactivation at different irradiation periods and salt concentrations was investigated. A smaller effect was observed in S. aureus because the photosensitizers alone were already very effective. In E. coli, photokilling potentiation was mainly found at longer irradiation periods. Moreover, the photoinactivation of C. albicans mediated by these BODIPYs was increased in the presence of KI. In solution, an increase in the formation of the BODIPY triplet states was observed with the addition of the salt, due to the effect of external heavy atoms. The greater intersystem crossing together with the formation of reactive iodine species induced by BODIPYs may be contributing to enhance the inactivation of microorganisms. Therefore, these BODIPYs represent interesting photosensitizers to inactivate microorganisms. In particular, BODIPY 3 in combination with KI was highly effective as a broad spectrum antimicrobial photosensitizer.

12.
Eur J Med Chem ; 126: 110-121, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27750145

RESUMO

Two cationic BODIPYs 3 and 4 were synthesized by acid-catalyzed condensation of the corresponding pyrrole and benzaldehyde, followed by complexation with boron and methylation. Compound 3 contains methyl at the 1,3,5 and 7 positions of the s-indacene ring and a N,N,N-trimethylamino group attached to the phenylene unit, while 4 is not substituted by methyl groups and the cationic group is bound by an aliphatic spacer. UV-visible absorption spectra of these BODIPYs show an intense band at ∼500 nm in solvents of different polarities and n-heptane/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Compound 3 exhibits a higher fluorescence quantum yield (ΦF = 0.29) than 4 (ΦF = 0.030) in N,N-dimethylformamide (DMF) due to sterically hindered rotation of the phenylene ring. BODIPYs 3 and 4 induce photosensitized oxidation of 1,3-diphenylisobenzofuran (DPBF) with yields of singlet molecular oxygen of 0.07 and 0.03, respectively. However, the photodynamic activity increases in a microheterogenic medium formed by AOT micelles. Also, both BODIPYs sensitize the photodecomposition of l-tryptophan (Trp). In presence of diazabicyclo[2.2.2]octane (DABCO) or D-mannitol, a reduction in the photooxidation of Trp was found, indicating a contribution of type I photoprocess. Moreover, the addition of KI produces fluorescence quenching of BODIPYs and reduces the photooxidation of DPBF. In contrast, this inorganic salt increases the photoinduced decomposition of Trp, possibly due to the formation of reactive iodine species. The effect of KI was also observed in the potentiation of the photoinactivation of microorganisms. Therefore, the presence of KI could increase the decomposition of biomolecules induced by these BODIPYs in a biological media, leading to a higher cell photoinactivation.


Assuntos
Compostos de Boro/síntese química , Compostos de Boro/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Compostos de Boro/química , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Técnicas de Química Sintética , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Oxirredução , Fármacos Fotossensibilizantes/química , Iodeto de Potássio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos da radiação
13.
J Photochem Photobiol B ; 158: 243-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994333

RESUMO

A novel 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was synthesized by reduction of the corresponding porphyrin TAPP with p-toluenesulfonhydrazide, followed by selective oxidation with o-chloranil. Spectroscopic properties and the photodynamic activity of these photosensitizers were compared in N,N-dimethylformamide. An increase in the absorption band at 650nm was found for the chlorin derivative with respect to TAPP. These photosensitizers emit red fluorescence with quantum yields of 0.15. Both compounds were able to photosensitize singlet molecular oxygen with quantum yields of about 0.5. Also, the formation of superoxide anion radical was detected in the presence of TAPC or TAPP and NADH. Photodynamic inactivation was investigated on a Gram-positive bacterium Staphylococcus aureus, a Gram-negative bacterium Escherichia coli and a fungal yeast Candida albicans cells. In vitro experiments showed that TAPC or TAPP were rapidly bound to microbial cells at short incubation periods. These photosensitizers, without intrinsic positive charges, contain four basic amino groups. These substituents can be protonated at physiological pH, increasing the interaction with the cell envelopment. Photosensitized inactivation improved with an increase of both photosensitizer concentrations and irradiation times. After 15min irradiation, a 7 log reduction of S. aureus was found for treated with 1µM photosensitizer. Similar result was obtained with E. coli after using 5µM photosensitizer and 30min irradiation. Also, the last conditions produced a decrease of 5 log in C. albicans cells. Therefore, TAPC was highly effective as a broad-spectrum antimicrobial photosensitizer.


Assuntos
Anti-Infecciosos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Porfirinas/farmacologia , Espectroscopia de Ressonância Magnética , Porfirinas/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos
14.
Redox Rep ; 20(6): 246-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207873

RESUMO

OBJECTIVES: The study was focused on the activity of propolis from Amaicha del Valle, Argentina (ProAV) as a promoter and scavenger of Riboflavin (Rf)--photogenerated reactive oxygen species (ROS). METHODS: Through a kinetic and mechanistic study, employing stationary and time-resolved photochemical and electrochemical techniques, the protecting activity of ProAV was investigated. RESULTS: In the absence of light and Rf, ProAV exerted a relatively efficient inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl radicals and acts as a protector of artificially promoted linoleic acid oxidation. Under aerobic visible-light-irradiation conditions, in the presence of Rf as the only light-absorber species, a complex picture of competitive processes takes place, starting with the quenching of singlet and triplet electronically excited states of Rf by ProAV. The species O2(1 g), O2(•-), H2O2, and OH(•) are generated and interact with ProAV. DISCUSSION: ProAV behaves as an efficient ROS scavenger. It is scarcely photo-oxidized by interaction with the mentioned ROS. Quantitative results indicate that ProAV is even more resistant to photo-oxidation than the recognized antioxidant trolox. Two dihydroxychalcones, mostly present in the ProAV composition, are responsible for the protecting activity of the propolis.


Assuntos
Própole/química , Espécies Reativas de Oxigênio/química , Riboflavina/química , Antioxidantes/química , Compostos de Bifenilo/química , Chalconas/química , Cromanos/química , Sequestradores de Radicais Livres/química , Peróxido de Hidrogênio/química , Luz , Ácido Linoleico/química , Oxigênio/química , Fenol/química , Fotoquímica , Fotólise , Fármacos Fotossensibilizantes/química , Picratos/química , Regiões Promotoras Genéticas , Espectrometria de Fluorescência , Triptofano/química
15.
J Photochem Photobiol B ; 142: 35-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25496875

RESUMO

Trace amounts of the widely used ß-lactam antibiotics (Atbs) in waste water may cause adverse effects on the ecosystems and contribute to the proliferation of antibiotic-resistant bacteria. On these grounds, kinetic and mechanistic aspects of photosensitized degradation of Ceftriaxone (Cft) and Cefotaxime (Ctx), have been studied in pure water by stationary and time-resolved techniques. Additionally, possible implications of these photoprocesses on the antimicrobial activity of the Atbs have also been investigated. Photoirradiation of aqueous solutions of Cft and Ctx produces the degradation of both Atbs in the presence of Riboflavin (vitamin B2), a well known pigment dissolved in natural aquatic systems. The process occurs through Type I and Type II mechanisms, with effective prevalence of the former. The participation of O2(-), OH and O2((1)Δg) is supported by experiments of oxygen consumption carried out in the presence of specific scavengers for such reactive oxygen species. Microbiological assays exhibit a parallelism between the rate of Cft and Ctx photodegradation and the loss of their bactericidal capacity on Staphylococcus aureus strains. Results contribute to both understanding kinetic and mechanism aspects of the degradation and predicting on natural decay of Atbs waste water-contaminants.


Assuntos
Antibacterianos/química , Cefotaxima/química , Ceftriaxona/química , Luz , Riboflavina/química , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Ceftriaxona/farmacologia , Cinética , Oxirredução , Fotólise , Oxigênio Singlete/química , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacos , Superóxidos/química , Água/química
16.
Photochem Photobiol ; 89(6): 1463-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23789718

RESUMO

Diflunisal (DFNS) and Indomethacin (IMTC) are two profusely employed NSAIDs that provide anti-inflammatory and analgesic effects in humans. The scavenging of reactive oxygen species (ROS) by both NSAIDs was systematically studied in pH 7 aqueous solution. The ROS O2 ((1)Δg), O2(•-) and H2O2, generated by visible light irradiation of Riboflavin (Rf) in the presence of DFNS and IMTC, are deactivated by the NSAIDs. The ROS scavenging action by both NSAIDs constitutes an interesting result and adds one more positive aspect to the beneficial actions attributed to these drugs. Nevertheless it should be taken into account that several NSAIDs, in particular IMTC, have been connected to the pathogenesis of gastric mucosal lesions, which in some cases includes ROS generating-ability. DFNS quenches ROS in a dominant physical fashion. It constitutes an excellent protective-antioxidant provided that is practically not destroyed/oxidized after the ROS scavenging action. IMTC, being also an efficient interceptor of ROS, belong to the so-called group of sacrificial-ROS quenchers: It is easily degraded by the oxidative species in the scavenging action. Although this property is negative in the context of prolonged ROS elimination, exhibits a promissory aspect for the degradation of pharmaceutical contaminants, such as NSAIDs, in waste waters.


Assuntos
Anti-Inflamatórios não Esteroides/química , Diflunisal/química , Indometacina/química , Espécies Reativas de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...