Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2576: 329-348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152200

RESUMO

Endocannabinoids at nanomolar physiological concentrations cross cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics and endocannabinoid trafficking employing radioligands and mass spectrometry. Here, we describe radiosubstrate-based assays using arachidonoyl[1-3H]ethanolamine and 2-arachidonoyl[1,2,3-3H]glycerol to measure cellular endocannabinoid uptake in a three-phase assay with human U937 cells. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS)-based lipidomics was used to interrogate the roles of serum and albumin for endocannabinoid trafficking in U937 cells.


Assuntos
Endocanabinoides , Espectrometria de Massas em Tandem , Albuminas , Etanolaminas , Glicerol , Humanos , Espectrometria de Massas em Tandem/métodos
2.
J Nat Prod ; 84(9): 2502-2510, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34304557

RESUMO

The cis-stereoisomers of Δ9-THC [(-)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9-cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (-)-Δ9-trans-THC [(-)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9-cis-THC (3) is scalemic (ca. 80-90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(-)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (-)-Δ9-cis-THC [(-)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of "Δ9-THC and isomers" and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9-cis-THCs [(+)-3 and (-)-3] in cannabis fiber hemp varieties.


Assuntos
Canabinoides/agonistas , Dronabinol/farmacologia , Animais , Cannabis/química , Dronabinol/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Estereoisomerismo
3.
ACS Pharmacol Transl Sci ; 4(2): 765-779, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860200

RESUMO

The modulation of the endocannabinoid system (ECS) has shown positive results in animal models of multiple sclerosis (MS) and immune and inflammatory disorders. However, chronic administration of CB1 receptor agonists and degrading enzyme inhibitors can lead to CB1 receptor desensitization and sedation. WOBE437 is the prototype of a new class of ECS modulators named selective endocannabinoid reuptake inhibitors (SERIs), which mildly and selectively increase central endocannabinoid levels with a self-limiting mode of action. In previous studies, WOBE437 demonstrated analgesic, anxiolytic, and anti-inflammatory effects. Here, we tested the therapeutic potential of WOBE437 in a clinically relevant mouse model of MS (experimental autoimmune encephalomyelitis). C57BL/6 mice were administered WOBE437 (10 mg/kg, 20 days) or vehicle using two therapeutic options: (1) starting the treatment at the disease onset or (2) before reaching the peak of the disease. In both strategies, WOBE437 significantly reduced disease severity and accelerated recovery through CB1 and CB2 receptor-dependent mechanisms. At the peak of the disease, WOBE437 increased endocannabinoid levels in the cerebellum, concurring with a reduction of central nervous system (CNS)-infiltrating immune cells and lower microglial proliferation. At the end of treatment, endocannabinoid levels were mildly increased in brain, cerebellum, and plasma of WOBE437-treated mice, without desensitization of CB1 receptor in the brain and cerebellum. In a mouse model of spasticity (Straub test), WOBE437 (10 mg/kg) induced significant muscle relaxation without eliciting the typical sedative effects associated with muscle relaxants or CB1 receptor agonists. Collectively, our results show that WOBE437 (and SERIs) may represent a novel therapeutic strategy for slowing MS progression and control major symptoms.

4.
Eur J Med Chem ; 208: 112858, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002735

RESUMO

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system that eventually leads to progressive neurodegeneration and disability. Recent findings highlighted the emerging role of each target of the endocannabinoid system in controlling the symptoms and disease progression of multiple sclerosis. Therefore, multi-target modulators of the endocannabinoid system could provide a more effective pharmacological strategy as compared to the single target modulation. In this work, N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide (B2) was identified as the most promising compound with dual agonism at cannabinoid receptors type-1 and cannabinoid receptors type-2 and good drug-like properties. In in vitro assays, B2 reduced glutamate release from rat synaptosomes through interaction with cannabinoid receptors type-1 and modulated the production of the pro- and anti-inflammatory cytokines (interleukins IL-1ß and IL-6 and interleukin IL-10 respectively) via cannabinoid receptors type-2 activation. Furthermore, B2 demonstrated antinociceptive effects in an animal model of neuropathic pain and efficacy in an experimental autoimmune encephalomyelitis model of multiple sclerosis.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Piridonas/uso terapêutico , Analgésicos/síntese química , Analgésicos/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Feminino , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Piridonas/síntese química , Piridonas/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
5.
Oncogene ; 39(14): 2948-2960, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034305

RESUMO

Enhanced prostaglandin production promotes the development and progression of cancer. Prostaglandins are generated from arachidonic acid (AA) by the action of cyclooxygenase (COX) isoenzymes. However, how cancer cells are able to maintain an elevated supply of AA for prostaglandin production remains unclear. Here, by using lung cancer cell lines and clinically relevant KrasG12D-driven mouse models, we show that the long-chain acyl-CoA synthetase (ACSL3) channels AA into phosphatidylinositols to provide the lysophosphatidylinositol-acyltransferase 1 (LPIAT1) with a pool of AA to sustain high prostaglandin synthesis. LPIAT1 knockdown suppresses proliferation and anchorage-independent growth of lung cancer cell lines, and hinders in vivo tumorigenesis. In primary human lung tumors, the expression of LPIAT1 is elevated compared with healthy tissue, and predicts poor patient survival. This study uncovers the ACSL3-LPIAT1 axis as a requirement for the sustained prostaglandin synthesis in lung cancer with potential therapeutic value.


Assuntos
Aciltransferases/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Coenzima A Ligases/metabolismo , Prostaglandinas/metabolismo , Transdução de Sinais/fisiologia , Células A549 , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares , Masculino , Camundongos , Camundongos Endogâmicos NOD
6.
Bioorg Chem ; 94: 103353, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668465

RESUMO

Several preclinical evidence indicate that the modulation of the endocannabinoid system (ECS) represents a promising therapeutic approach for different diseases. However, only few modulators of this system have reached so far an advanced stage of clinical development, mainly due to limited efficacy and CB1 receptor-dependent side effects. Those limitations might be overcome by multi-target compounds that exert pro-cannabinoid activities through the modulation of two or more targets in the ECS. This approach can offer a safer and more effective pharmacological strategy as compared to the modulation of a single target. In this work, we report the synthesis and biological characterization of new 6-aryl-1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives. Our results identified several compounds exhibiting interesting multi-target profiles within the ECS. In particular, compound B1 showed moderate-to-high affinity for cannabinoid receptors (Ki CB1R = 304 nM, partial agonist, Ki CB2R = 3.1 nM, inverse agonist) and a potent inhibition of AEA uptake (IC50 = 62 nM) with moderate inhibition of FAAH (IC50 = 2.9 µM). The corresponding 2-alkoxypyridine analogue B14 exhibited significant inhibitor activity on both FAAH (IC50 = 69 nM) and AEA uptake (IC50 = 76 nM) without significantly binding to both cannabinoid receptor subtypes. Molecular docking analysis was carried out on the three-dimensional structures of CB1R and CB2R and of FAAH to rationalize the structure-activity relationships of this series of compounds.


Assuntos
Endocanabinoides/metabolismo , Piridinas/química , Animais , Humanos , Simulação de Acoplamento Molecular , Receptores de Canabinoides/metabolismo , Relação Estrutura-Atividade
7.
Front Mol Neurosci ; 11: 180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910713

RESUMO

Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo, but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo. Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated tmax value of ≤20 min in plasma (Cmax ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (Cmax ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N-acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.

8.
J Agric Food Chem ; 65(43): 9435-9442, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942644

RESUMO

Guineensine is a dietary N-isobutylamide widely present in black and long pepper (Piper nigrum and Piper longum) previously shown to inhibit cellular endocannabinoid uptake. Given the role of endocannabinoids in inflammation and pain reduction, here we evaluated guineensine in mouse models of acute and inflammatory pain and endotoxemia. Significant dose-dependent anti-inflammatory effects (95.6 ± 3.1% inhibition of inflammatory pain at 2.5 mg/kg ip and 50.0 ± 15.9% inhibition of edema formation at 5 mg/kg ip) and acute analgesia (66.1 ± 28.1% inhibition at 5.0 mg/kg ip) were observed. Moreover, guineensine inhibited proinflammatory cytokine production in endotoxemia. Intriguingly, guineensine and LPS independently induced catalepsy, but in combination this effect was abolished. Both hypothermia and analgesia were blocked by the CB1 receptor inverse agonist rimonabant, but the pronounced hypolocomotion was CB1 receptor-independent. A subsequent screen of 45 CNS-related receptors, ion channels, and transporters revealed apparent interactions of guineensine with the dopamine transporter DAT, 5HT2A, and sigma receptors, uncovering its prospective polypharmacology. The described potent pharmacological effects of guineensine might relate to the reported anti-inflammatory effects of pepper.


Assuntos
Alcenos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Edema/tratamento farmacológico , Endocanabinoides/metabolismo , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Inflamação/tratamento farmacológico , Piper nigrum/química , Extratos Vegetais/administração & dosagem , Animais , Edema/metabolismo , Endocanabinoides/antagonistas & inibidores , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Sementes/química
9.
Proc Natl Acad Sci U S A ; 114(25): E5006-E5015, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584105

RESUMO

The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.


Assuntos
Transporte Biológico/efeitos dos fármacos , Endocanabinoides/metabolismo , Animais , Ansiolíticos/farmacologia , Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glicerídeos/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Alcamidas Poli-Insaturadas/metabolismo , Receptores de Canabinoides/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...