Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(33): 46023-46037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980486

RESUMO

Groundwater in northwestern parts of Bangladesh, mainly in the Chapainawabganj District, has been contaminated by arsenic. This research documents the geographical distribution of arsenic concentrations utilizing machine learning techniques. The study aims to enhance the accuracy of model predictions by precisely identifying occurrences of groundwater arsenic, enabling effective mitigation actions and yielding more beneficial results. The reductive dissolution of arsenic-rich iron oxides/hydroxides is identified as the primary mechanism responsible for the release of arsenic from sediment into groundwater. The study reveals that in the research region, alongside elevated arsenic concentrations, significant levels of sodium (Na), iron (Fe), manganese (Mn), and calcium (Ca) were present. Statistical analysis was employed for feature selection, identifying pH, electrical conductivity (EC), sulfate (SO4), nitrate (NO3), Fe, Mn, Na, K, Ca, Mg, bicarbonate (HCO3), phosphate (PO4), and As as features closely associated with arsenic mobilization. Subsequently, various machine learning models, including Naïve Bayes, Random Forest, Support Vector Machine, Decision Tree, and logistic regression, were employed. The models utilized normalized arsenic concentrations categorized as high concentration (HC) or low concentration (LC), along with physiochemical properties as features, to predict arsenic occurrences. Among all machine learning models, the logistic regression and support vector machine models demonstrated high performance based on accuracy and confusion matrix analysis. In this study, a spatial distribution prediction map was generated to identify arsenic-prone areas. The prediction map also displays that Baroghoria Union and Rajarampur region under Chapainawabganj municipality are high-risk areas and Maharajpur Union and Baliadanga Union are comparatively low-risk areas of the research area. This map will facilitate researchers and legislators in implementing mitigation strategies. Logistic regression (LR) and support vector machine (SVM) models will be utilized to monitor arsenic concentration values continuously.


Assuntos
Arsênio , Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Poluentes Químicos da Água , Água Subterrânea/química , Bangladesh , Arsênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
2.
Heliyon ; 10(6): e27917, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533039

RESUMO

One of the biggest environmental worries in the world today is the risk of arsenic (As) contamination in groundwater. The Atomic Absorption Spectrometer (AAS) was used in this work to assess the As content in groundwater samples from 38 shallow (27 m) tubewells in northwest Bangladesh to determine the existing situation, potential source(s), and likely health risk of As and other important water quality parameters. The range of arsenic concentrations (µgL-1) was troublesome and greater than the WHO recommended level for drinking water, ranging from 0.50 to 164 (mean ± SD: 20.22 ± 36.46). In groundwater, the concentrations of Fe, and Mn vary from 0.04 to 52.75 mgL-1 (mean ± SD: 4.23 ± 9.68), and 0.23 to 3.27 mgL-1 (mean ± SD: 1.10 ± 0.67). The obtained groundwater samples have pH values ranging from 5.9 to 7.1, which indicates a somewhat acidic to neutral character. Major cations have an average abundance that is as follows: Ca2+ > Mg2+ > Na+ > K+, while major anions have an average abundance that is as follows: HCO3- > Cl- > SO42- > NO3-; Ca2+ and HCO3- are the main cation and anion, respectively. The groundwater in the Rajarampur village was deemed unfit for drinking or irrigation based on analyses of water quality performed using the entropy water quality index. The Ca-HCO3 type of water, in which Ca2+ and HCO3- are the main positive ions and negative ions, is suggested by the Piper tri-linear diagram. It was discovered that silicate weathering regulates the hydro-geochemical activities in groundwater using a bi-variate examination of several hydro-chemical variables. Four major clusters were observed for the water sample. According to reductive dissolution processes and principal component analysis, the arsenic in groundwater is geogenic in origin. Arsenic is discharged from sediment to groundwater by reductive dissolution of FeOOH and MnOOH, as shown by the modest connection between As, Fe, and Mn. The United Nations Environmental Protection Agency's (USEPA) suggested value for probable cancer risk assessment was 10-6, however the probable cancer risk assessment found a higher value, indicating that the population in the study region was at high risk for cancer. Remedial measures for arsenic mitigation include removing arsenic from groundwater after it is extracted, searching for alternative aquifers, and implementing various water-supply technologies such as dugwells, deep tubewells, pond-sand filters, and rainwater harvesting systems.

3.
J Hazard Mater ; 465: 133214, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101007

RESUMO

Eleven trace metals (Cd, Cr, Fe, Mn, Cu, Ni, Co, Zn, As, Pb, and Ag) in sediments of Bangladesh's ship breaking area were measured by an atomic absorption spectrometer to determine origin, contamination extent, spatial distributions, and associated ecological and human health hazards. This study found considerable quantities of Pb, Cd, Mn, Zn, and Cu when compared with standards and high levels of Pb, Cd, Zn, Cu, As, and Ag contamination according to pollution evaluation indices. Different indices indicate most of the sampling sites were highly polluted. However, spatial distribution maps indicate that trace metals were predominantly deposited in the northern and southern region. The ecological risk index revealed that Cd has the highest while Pb and As had moderate risk. Based on the health index values, Zn for both adults and children were higher than the safe limit while Mn, Pb, Cr, As, Fe, Cu, Ni, and Co for children were close to the threshold. The mean total carcinogenic risk values of Cr, As, and Ni for children and Ni for adults exceeded the permissible threshold. The cancer risk possibilities were further assessed using Monte Carlo simulation. Most trace metals have anthropogenic origins, which were attributed to ship breaking activities.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Metais Pesados/análise , Monitoramento Ambiental , Bangladesh , Navios , Cádmio , Chumbo , Sedimentos Geológicos , Medição de Risco , Poluentes Químicos da Água/análise , China
4.
Mar Pollut Bull ; 192: 115103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37276710

RESUMO

Elemental composition, multivariate statistical analyses with the absolute principal component score-multiple linear regression (APCS-MLR) model, and different pollution indices in Upper and Lower Southwestern Ganges-Brahmaputra-Meghna (GBM) delta sediments were studied to characterize pollution, ecological risk and quantify potential toxic element sources of the area. Toxic metals concentrations were higher in Lower Delta and individual pollution indices showed Upper Delta was moderately polluted by arsenic, chromium, cobalt, copper and lead, and Lower Delta was moderately-strongly polluted by the same metals. Synergistic indices include Potential Ecological, Toxic, Nemerow, and Pollution Risk indices in Upper and Lower Delta sediment ranged from 47.17-128.07, 2.03-12.19, 29.92-65.42, 0.28-1.62, and 69.17-246.90, 8.00-13.47, 20.53-152.92, 1.18-1.58, indicated low and moderate risk pollution, respectively. Statistical models represent the metals dominantly originated from nature for Upper Delta, and both natural and anthropogenic activities contributed to Lower Delta sediment. The study found that the modern deposit in Lower Delta became more contaminated and thus enhanced ecological risk.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Rios , Bangladesh , Arsênio/análise , Metais Pesados/análise , Poluição Ambiental/análise , Monitoramento Ambiental , Medição de Risco , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , China
5.
Environ Sci Pollut Res Int ; 30(6): 16210-16235, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181596

RESUMO

The concentrations of eleven heavy metals (Pb, Cd, Cr, Fe, Mn, Zn, Cu, Ni, Co, As, and Ag) were assessed in both groundwater and seawater collected from the ship-breaking industrial area of Bangladesh using an atomic absorption spectrometer. The investigation aimed to estimate the water quality and pollution level employing several indices, and its associated health risks for the first time in that area. This study found that Cd, Cr, Fe, Pb, Mn, and Ni were higher in both groundwater and seawater compared with WHO standards. Based on the WQI (water quality index) and EWQI (entropy water quality index) classifications, the quality of most of the groundwater is extremely poor or unsuitable for drinking purposes. Furthermore, the HPI (heavy metal pollution index), HEI (heavy metal evaluation index), and CD (degree of contamination) values of most groundwater and all seawater samples exhibit a higher degree of pollution. In addition, the results of NI (Nemerow pollution index) come to an end that both groundwater and seawater in the study area are mostly polluted by Fe, Mn, Pb, Cr, and Cd. Although the HI (hazard quotient index) values of almost all studied heavy metals in both cases of adults and children are within the safe limit, the HI value of Cr for an adult is near the threshold limit and the maximum HI value of Cr for children exceeds this limit. The carcinogenic risk reveals that Cr, Pb, As, and Cd produce detrimental effects on local people through the direct ingestion of groundwater. The pollution source is identified using principal component analysis and a Pearson correlation matrix as being primarily anthropogenic and attributed to intensive ship-breaking activities or other industries in the area.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Qualidade da Água , Monitoramento Ambiental/métodos , Bangladesh , Navios , Chumbo/análise , Metais Pesados/análise , Água do Mar , Medição de Risco , Poluentes Químicos da Água/análise
6.
Chemosphere ; 294: 133556, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35007611

RESUMO

To understand the mechanistic pathway of arsenic (As) enrichment and mobilization in groundwater (southeastern Bangladesh) and to evaluate the water quality as well as associated health risks, a suite of systematically collected groundwater samples (depth: 17-61 m) were analyzed. Arsenic concentrations (µg L-1) in the groundwater samples were ranged from 6 to 581 with a mean value of 199 which is significantly higher than the recommended values. The assessment of water quality using entropy water quality index and irrigation water quality indices revealed that the groundwater in the studied region was not recommended for drinking and irrigation, respectively with few exceptions. Dominant water types in the studied area were Ca-Mg-HCO3, Na-HCO3, and Na-Cl types. Various forms of water-rock interactions, leaching of evaporates, and the confined nature of the aquifer mostly control the hydro-chemical parameters. Fe/Mn bound As are likely to be released in the aquifer through the dissolution of carbonate minerals of Fe/Mn while the higher degree of water-rock interaction and probable oxidation of organic materials helped to elevate As concentration. The probable longer residence time of groundwater guided by topographic slope and the neighboring clayey aquitard govern the As mobilization in the aquifer. Probabilistic health risk assessment revealed that groundwaters from the studied area can cause both non-carcinogenic and carcinogenic health risks.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Bangladesh , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água
7.
Water Res ; 44(19): 5556-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20875661

RESUMO

Boreholes (50 m depth) and piezometers (50 m depth) were drilled and installed for collecting As-rich sediments and groundwater in the Ganges, Brahmaputra, and Meghna flood plains for geochemical analyses. Forty-one groundwater samples were collected from the three areas for the analyses of cations (Ca(2+), Mg(2+), K(+), Na(+)), anions (Cl(-), NO(3)(-), SO(4)(2-)), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction (XRD) and X-ray fluorescence (XRF) were performed to characterize the major mineral and chemical contents of aquifer sediments. In all three study areas, results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescent intensity of humic substances in groundwater samples ranges from 30 to 102 (mean 58 ± 20, n = 20), 54-195 (mean 105 ± 48, n = 10), and 27-243 (mean 79 ± 71, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Arsenic concentration in groundwater (20-50 m of depth) ranges from 3 to 315 µg/L (mean 62.4 ± 93.1 µg/L, n = 20), 16.4-73.7 µg/L (mean 28.5 ± 22.4 µg/L, n = 10) and 4.6-215.4 µg/L (mean 30.7 ± 62.1 µg/L, n = 11) in the Ganges, Brahmaputra and Meghna flood plains, respectively. Specific ultra violet adsorption (SUVA) values (less than 3 m(-1) mg(-1) L) indicate that the groundwater in the Ganges flood plain has relatively low percentage of aromatic organic carbon compared to those in the Brahmaputra and Meghna flood plains. Arsenic content in sediments ranges from 1 to 11 mg/kg (mean 3.5 ± 2.7 mg/kg, n = 17) in the three flood plains. Total organic carbon content is 0.5-3.7 g/kg (mean 1.9 ± 1.1 g/kg) in the Ganges flood plain, 0.5-2.1 g/kg (mean: 1.1 ± 0.7 g/kg) in the Brahmaputra flood plain and 0.3-4.4 g/kg (mean 1.9 ± 1.9 g/kg) in the Meghna flood plain. Arsenic is positively correlated with TOC (R(2) = 0.50, 0.87, and 0.85) in sediments from the three areas. Fourier transform infrared (FT-IR) analysis of the sediments revealed that the functional groups of humic substances in three areas include amines, phenol, alkanes, and aromatic carbon. Arsenic and Fe speciation in sediments were determined using XANES and the results imply that As(V) and Fe(III) are the dominant species in most sediments. The results also imply that As (V) and Fe (III) in most of the sediment samples of the three areas are the dominant species. X-ray absorption fine structure (EXAFS) analysis shows that FeOOH is the main carrier of As in the sediments of three areas. In sediments, As is well correlated with Fe and Mn. However, there is no such correlation observed between As and Fe as well as As and Mn in groundwater, implying that mobilizations of Fe, Mn, and As are decoupled or their concentrations in groundwater have been affected by other geochemical processes following reductive dissolution of Fe or Mn-hydroxides. For example, dissolved Fe and Mn levels may be affected by precipitation of Fe- and Mn-carbonate minerals such as siderite, while liberated As remains in groundwater. The groundwaters of the Brahmaputra and Meghna flood plains contain higher humic substances in relative fluorescence intensity (or fluorescence index) and lower redox potential compared to the groundwater of Ganges flood plain. This leads to the release of arsenic and iron to groundwater of these three plains in considerable amounts, but their concentrations are distributed in spatial variations.


Assuntos
Arsênio/análise , Água Doce/química , Sedimentos Geológicos/química , Substâncias Húmicas/análise , Poluentes Químicos da Água/análise , Ânions/análise , Bangladesh , Carbono/análise , Cátions/análise , Metais Pesados/análise , Rios , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...