Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866715

RESUMO

In this research, we utilized an efficient approach to synthesize superparamagnetic graphene oxide (SPGO) rapidly in a one-pot method using microwave irradiation of graphene oxide (GO), urea, and Fe(III) ion. Tannic acid (TA) was introduced to the surface of SPGO through a straightforward and eco-friendly process. Methods were devised to furnish GO nanosheets and modify their surfaces with TA in an environmentally friendly manner. Two series of nanosheets, namely, SPGO/TA-COOH and SPGO/TA-IM, were engineered on the surface and used for immobilizing lipase enzyme. Through various analytical tools, the unique biocatalysts SPGO/TA-COOH/L and SPGO/TA-IM/L were confirmed. These biocatalysts exhibited enhanced stability at high temperatures and pH levels compared with free lipase. They also demonstrated prolonged storage stability and reusability over four months and seven cycles, respectively. Furthermore, the catalytic activity of immobilized lipase showed minimal impairment based on kinetic behavior analysis. The kinetic constants of SPGO/TA-IM/L were determined as Vmax = 0.24 mM min-1, Km = 0.224 mM, and kcat = 0.8 s-1. Additionally, the efficiency of biocatalysts for biodiesel production from palmitic acid was studied, focusing on various reaction parameters, such as temperature, alcohol to palmitic acid molar ratio, water content, and lipase quantity. The esterification reaction of palmitic acid with methanol, ethanol, and isopropanol was tested in the presence of SPGO/TA-COOH/L and SPGO/TA-IM/L, and the corresponding esters were obtained with a yield of 30.6-91.6%.

2.
RSC Adv ; 12(10): 5971-5977, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424559

RESUMO

The self-assembly approach was used for amine decoration of core/shell Fe3O4@Au with 4-aminothiophenol. This structure was used for covalent immobilization of lipase using a Ugi 4-component reaction. The amine group on the structure and carboxylic group from lipase can react in the Ugi reaction and a firm and stable covalent bond is created between enzyme and support. The synthesized structure was fully characterized and its activity was explored in different situations. The results showed the pH and temperature stability of immobilized lipase compared to free lipase in a wide range of pH and temperature. Also after 60 days, it showed excellent activity while residual activity for the free enzyme was only 10%. The synthesized structure was conveniently separated using an external magnetic field and reused 6 times without losing the activity of the immobilized enzyme.

3.
ACS Appl Bio Mater ; 3(12): 8414-8426, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019613

RESUMO

To expand the field of nanomaterial and engineering of enzyme in eco-friendly processes, gold mesoflower (Au-MF) nanostructure was applied for preparation of three series of immobilized lipase (Au-MF/SAM 1-3) through biofunctionalization of surface by Ugi multicomponent reaction. The synthesized Au-MF/SAM 1-3/lipase as unique biocatalysts was confirmed by different analytical tools and techniques. Compared to the free lipase, the Au-MF/SAM 1-3/lipase showed more stability at high temperature and pH. Also, these biocatalysts showed high storage stability and reusability after 2 months and eight cycles, respectively. Moreover, the kinetic behavior was investigated and the results showed a minimal impairment of catalytic activity of immobilized lipase. The kinetic constants of the immobilized lipase, Au-MF/SAM 2/lipase, are Km = 0.37 mM, Vmax = 0.22 mM min-1, and kcat = 154 min-1. The immobilized lipase showed smaller activation energy (Ea) than that of free enzyme, indicating that the immobilized enzyme is less sensitive to temperature. In the following, the biodiesel production from palmitic acid was studied in the presence of Au-MF/SAM 2/lipase as an efficient biocatalyst. The influence of different reaction parameters such as temperature, molar ratio of alcohol to palmitic acid, water content, and lipase amount was deeply investigated.

4.
Neurochem Res ; 44(12): 2695-2707, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31720946

RESUMO

Stem cells have been long looked at as possible therapeutic vehicles in regenerative medicine largely due to their multi-lineage differentiation potential and paracrine actions. Therefore, development of new procedures for the differentiation of stem cells into different cell types holds great potential for opening new opportunities in regenerative medicine. In addition to various methods for inducing stem cell differentiation, the utilization of nanomaterials for differentiation of stem cells has recently received considerable attention and has become a potential tool for such purpose. Multiple lines of evidence revealed that nanomaterial-based scaffolds, inorganic nanoparticles (NPs), and biodegradable polymers have led to significant progress in regulation of stem cell differentiation. Several studies indicated that different NPs including selenium, gold, graphene quantum dots (QDs) and silica could be employed for the regulation of differentiation of stem cells such as human mesenchymal stem cells (hMSCs). In addition, magnetic core-shell NPs could be applied for the regulation of neural stem cell (NSC) differentiation. Taken together, these findings suggested that NPs are potential candidates which could be utilized for the differentiation of stem cells into various cell types such as neural cells. Herein, we summarized the application of NPs for differentiation of stem cells into various cells in particular neural cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas Metálicas/química , Células-Tronco Neurais/metabolismo , Pontos Quânticos/química , Humanos
5.
Langmuir ; 33(34): 8503-8515, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28732161

RESUMO

Owing to properties of magnetic nanoparticles and elegant three-dimensional macromolecule architectural features, dendrimeric structures have been investigated as nanoscale drug delivery systems. In this work, a novel magnetic nanocarrier, generation two (G2) triazine dendrimer modified Fe3O4@SiO2 magnetic nanoparticles (MNP-G2), was designed, fabricated, and characterized by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The prepared MNP-G2 nanosystem offers a new formulation that combines the unique properties of MNPs and triazine dendrimer as a biocompatible material for biomedical applications. To demonstrate the potential of MNP-G2, the nanoparticles were loaded with methotrexate (MTX), a proven chemotherapy drug. The MTX-loaded MNP-G2 (MNP-G2/MTX) exhibited a high drug-loading capacity of MTX and the excellent ability for controlled drug release. The cytotoxicity of MNP-G2/MTX using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based assay and MCF-7, HeLa, and Caov-4 cell lines revealed that MNP-G2/MTX was more active against the tumor cells than the free drug in a mildly acidic environment. The results of hemolysis, hemagglutination, and coagulation assays confirmed the good blood safety of MNP-G2/MTX. Moreover, the cell uptake and intracellular distribution of MNP-G2/MTX were studied by flow cytometry analysis and confocal laser scanning microscopy (CLSM). This research suggests that MNP-G2/MTX with good biocompatibility and degradability can be selected as an ideal and effective drug carrier in targeted biomedicine studies especially anticancer applications.


Assuntos
Nanopartículas de Magnetita , Dendrímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas
6.
Langmuir ; 33(22): 5565-5576, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28489410

RESUMO

This study is an attempt to make a step forward to implement the very immature concept of pumpless transportation of liquid into a real miniaturized device or lab-on-chip (LOC) on a plastic substrate. "Inert" plastic materials such as polypropylene (PP) are used in a variety of biomedical applications but their surface engineering is very challenging. Here, it was demonstrated that with a facile innovative wettability patterning route using fluorosilanized UV-independent TiO2 nanoparticle coating it is possible to create wedge-shaped open microfluidic tracks on inert solid surfaces for low-cost biomedical devices (lab-on-plastic). For the future miniaturization and integration of the tracks into a device, a variety of characterization techniques were used to not only systematically study the surface patterning chemistry and topography but also to have a clear knowledge of its biological interactions and performance. The effect of such surface architecture on the biological performance was studied in terms of static/dynamic protein (bovine serum albumin) adsorption, bacterial (Staphylococcus aureus and Staphylococcus epidermidis) adhesion, cell viability (using HeLa and MCF-7 cancer cell lines as well as noncancerous human fibroblast cells), and cell patterning (Murine embryonic fibroblasts). Strategies are discussed for incorporating such a confined track into a diagnostic device in which its sensing portion is based on protein, microorganism, or cells. Finally, for the proof-of-principle of biosensing application, the well-known high-affinity molecular couple of BSA-antiBSA as a biological model was employed.


Assuntos
Microfluídica , Animais , Técnicas Biossensoriais , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , Polipropilenos , Staphylococcus epidermidis , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...