Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 72: 16-34, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625254

RESUMO

The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE: The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed the critical role of oligoaniline-based conductive biomaterials in tissue engineering. Research on aniline oligomers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. The conductivity of this class of biomaterials can be tailored similar to that of tissues/organs. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature. Undoubtedly, investigations on the use of oligoaniline-based conductive biomaterials in tissue engineering need further advancement and a lot of critical questions are yet to be answered. In this review, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints for further development.


Assuntos
Compostos de Anilina , Materiais Biocompatíveis , Materiais Biomiméticos , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Transdução de Sinais/efeitos dos fármacos , Engenharia Tecidual/métodos , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Nanofibras/química
2.
Sci Rep ; 7(1): 17187, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215076

RESUMO

Neuronal disorder is an important health challenge due to inadequate natural regeneration, which has been responded by tissue engineering, particularly with conductive materials. A bifunctional electroactive scaffold having agarose biodegradable and aniline pentamer (AP) conductive parts was designed that exhibits appropriate cell attachment/compatibility, as detected by PC12 cell seeding. The developed carboxyl-capped aniline-pentamer improved agarose cell adhesion potential, also the conductivity of scaffold was in the order 10-5 S/cm reported for cell membrane. Electrochemical impedance spectroscopy was applied to plot the Nyquist graph and subsequent construction of the equivalent circuit model based on the neural model, exhibiting an appropriate cell signaling and an acceptable consistency between the components of the scaffold model with neural cell model. The ionic conductivity was also measured; exhibiting an enhanced ionic conductivity, but lower activation energy upon a temperature rise. Swelling behavior of the sample was measured and compared with pristine agarose; so that aniline oligomer due to its hydrophobic nature decreased water uptake. Dexamethasone release from the developed electroactive scaffold was assessed through voltage-responsive method. Proper voltage-dependent drug release could be rationally expected because of controllable action and elimination of chemically responsive materials. Altogether, these characteristics recommended the agarose/AP biopolymer for neural tissue engineering.


Assuntos
Compostos de Anilina/química , Materiais Biocompatíveis/química , Proliferação de Células , Tecido Nervoso/citologia , Sefarose/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Condutividade Elétrica , Teste de Materiais , Tecido Nervoso/fisiologia , Células PC12 , Ratos
3.
IET Nanobiotechnol ; 9(4): 191-200, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26224348

RESUMO

In this work, N, O-carboxymethyl chitosan (CMCS) samples from virgin chitosan (CS) were synthesised and CMCS/polyethylene oxide (PEO) (50/50) blend nanofibrous samples were successfully electrospun from their aqueous solution. The electrospinning conditions to achieve smooth and fine diameter nanofibrous mats were optimised via D-optimal design approach. Afterwards, vitamin C and phenytoin sodium (PHT-Na) were added to these samples for producing wound dressing materials. H-nuclear magnetic resonance, scanning electron microscopy and Fourier transform infrared tests for the evaluation of functionalised CS, morphology and biodegradability studies of CMCS/PEO blend nanofibrous samples were applied. The kinetic and drug release mechanism for vitamin C and PHT-Na drug-loaded electrospun samples were also investigated by UV-vis spectrophotometer and high performance liquid chromatography, respectively. The results showed an approximately similar drug release rate of the two drugs and followed Higuchi's kinetic model. The stem cells viability and their adhesion on the surface of the samples containing PHT-Na and vitamin C were carried out using MTT assay and the best cells' biocompatibility was obtained using both drugs into the CMCS/PEO nanofibrous samples. Moreover, the in vivo animal wound model results revealed that the electrospun samples containing vitamin C and PHT-Na (1%) had a remarkable efficiency in the wounds' closure and their healing process compared with vitamin C/PHT-Na (50/50) ointment. Finally, the histology observations showed that the wound treated with optimised electrospun samples containing two drugs enabled regeneration of epidermis layers due to collagen fibres accumulation followed by granulating tissues formation without necrosis.


Assuntos
Ácido Ascórbico/farmacologia , Adesão Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Nanofibras/química , Fenitoína/farmacologia , Polietilenoglicóis/química , Cicatrização/efeitos dos fármacos , Animais , Ácido Ascórbico/química , Ácido Ascórbico/farmacocinética , Quitosana/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Masculino , Fenitoína/química , Fenitoína/farmacocinética , Ratos , Ratos Wistar
4.
J Biomed Mater Res B Appl Biomater ; 102(5): 977-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24259351

RESUMO

For the first time, it has been tried to achieve optimum conditions for electrospun poly(ε-caprolactone)/polystyrene (PCL/PS) nanofibrous samples as active wound dressings containing chamomile via D-optimal design approach. In this work, systematic in vitro and in vivo studies were carried out by drug release rate, antibacterial and antifungal evaluations, cell culture, and rat wound model along with histology observation. The optimized samples were prepared under the following electrospinning conditions: PCL/PS ratio (65/35), PCL concentration 9%(w/v), PS concentration 14%(w/v), distance between the syringe needle tip and the collector 15.5 cm, applied voltage 18 kV, and solution flow rate 0.46 mL h(-1) . The FE-SEM micrographs showed electrospun PCL/PS (65/35) nanofibrous sample containing 15% chamomile had a minimum average diameter (∼175 nm) compared to the neat samples (∼268 nm). The drug released resulted in a gradual and high amount of chamomile from the optimized PCL/PS nanofibrous sample (∼70%) in respect to PCL and PS nanofibers after 48 h. This claim was also confirmed by antibacterial and antifungal evaluations in which an inhibitory zone with a diameter of about 7.6 mm was formed. The rat wound model results also indicated that the samples loaded with 15% chamomile extract were remarkably capable to heal the wounds up to 99 ± 0.5% after 14 days post-treatment periods. The adhesion of mesenchymal stem cells and their viability on the optimized samples were confirmed by MTT analysis. Also, the electrospun nanofibrous mats based on PCL/PS (65/35) showed a high efficiency in the wound closure and healing process compared to the reference sample, PCL/PS nanofibers without chamomile. Finally, the histology analysis revealed that the formation of epithelial tissues, the lack of necrosis and collagen fibers accumulation in the dermis tissues for the above optimized samples.


Assuntos
Antibacterianos , Bandagens , Camomila/química , Nanofibras/química , Poliésteres/química , Poliestirenos/química , Ferimentos e Lesões/terapia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Modelos Animais de Doenças , Humanos , Ratos , Staphylococcus aureus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...