Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Radiology ; 310(2): e231319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319168

RESUMO

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Assuntos
Processamento de Imagem Assistida por Computador , Radiômica , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Imagem Multimodal
2.
BMC Med Imaging ; 23(1): 195, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993801

RESUMO

BACKGROUND: The purpose of this study is to investigate the use of radiomics and deep features obtained from multiparametric magnetic resonance imaging (mpMRI) for grading prostate cancer. We propose a novel approach called multi-flavored feature extraction or tensor, which combines four mpMRI images using eight different fusion techniques to create 52 images or datasets for each patient. We evaluate the effectiveness of this approach in grading prostate cancer and compare it to traditional methods. METHODS: We used the PROSTATEx-2 dataset consisting of 111 patients' images from T2W-transverse, T2W-sagittal, DWI, and ADC images. We used eight fusion techniques to merge T2W, DWI, and ADC images, namely Laplacian Pyramid, Ratio of the low-pass pyramid, Discrete Wavelet Transform, Dual-Tree Complex Wavelet Transform, Curvelet Transform, Wavelet Fusion, Weighted Fusion, and Principal Component Analysis. Prostate cancer images were manually segmented, and radiomics features were extracted using the Pyradiomics library in Python. We also used an Autoencoder for deep feature extraction. We used five different feature sets to train the classifiers: all radiomics features, all deep features, radiomics features linked with PCA, deep features linked with PCA, and a combination of radiomics and deep features. We processed the data, including balancing, standardization, PCA, correlation, and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Finally, we used nine classifiers to classify different Gleason grades. RESULTS: Our results show that the SVM classifier with deep features linked with PCA achieved the most promising results, with an AUC of 0.94 and a balanced accuracy of 0.79. Logistic regression performed best when using only the deep features, with an AUC of 0.93 and balanced accuracy of 0.76. Gaussian Naive Bayes had lower performance compared to other classifiers, while KNN achieved high performance using deep features linked with PCA. Random Forest performed well with the combination of deep features and radiomics features, achieving an AUC of 0.94 and balanced accuracy of 0.76. The Voting classifiers showed higher performance when using only the deep features, with Voting 2 achieving the highest performance, with an AUC of 0.95 and balanced accuracy of 0.78. CONCLUSION: Our study concludes that the proposed multi-flavored feature extraction or tensor approach using radiomics and deep features can be an effective method for grading prostate cancer. Our findings suggest that deep features may be more effective than radiomics features alone in accurately classifying prostate cancer.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Teorema de Bayes , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Modelos Logísticos , Estudos Retrospectivos
3.
Pol J Radiol ; 88: e365-e370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701174

RESUMO

Purpose: Accurately segmenting head and neck cancer (HNC) tumors in medical images is crucial for effective treatment planning. However, current methods for HNC segmentation are limited in their accuracy and efficiency. The present study aimed to design a model for segmenting HNC tumors in three-dimensional (3D) positron emission tomography (PET) images using Non-Local Means (NLM) and morphological operations. Material and Methods: The proposed model was tested using data from the HECKTOR challenge public dataset, which included 408 patient images with HNC tumors. NLM was utilized for image noise reduction and preservation of critical image information. Following pre-processing, morphological operations were used to assess the similarity of intensity and edge information within the images. The Dice score, Intersection Over Union (IoU), and accuracy were used to evaluate the manual and predicted segmentation results. Results: The proposed model achieved an average Dice score of 81.47 ± 3.15, IoU of 80 ± 4.5, and accuracy of 94.03 ± 4.44, demonstrating its effectiveness in segmenting HNC tumors in PET images. Conclusions: The proposed algorithm provides the capability to produce patient-specific tumor segmentation without manual interaction, addressing the limitations of current methods for HNC segmentation. The model has the potential to improve treatment planning and aid in the development of personalized medicine. Additionally, this model can be extended to effectively segment other organs from limited annotated medical images.

4.
Comput Methods Programs Biomed ; 240: 107714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37473589

RESUMO

BACKGROUND: Numerous features are commonly generated in radiomics applications as applied to medical imaging, and identification of robust radiomics features (RFs) can be an important step to derivation of reliable, reproducible solutions. In this work, we utilize a tensor radiomics (TR) framework, where numerous fusions are explored, to generate different flavours of RFs, and we aimed to identify RFs that are robust to fusion techniques in head and neck cancer. Overall, we aimed to predict progression-free survival (PFS) using Hybrid Machine Learning Systems (HMLS) and reproducible RFs. METHODS: The study was performed on 408 patients with head and neck cancer from The Cancer Imaging Archive. After image preprocessing, 15 fusion techniques were employed to combine Positron Emission Tomography (PET) and Computed Tomography (CT) images. Subsequently, 215 RFs were extracted through a standardized radiomics software, with 17 'flavours' generated using PET-only, CT-only, and 15 fused PET&CT images. The variability of RFs across flavours was studied using the Intraclass Correlation Coefficient (ICC). Furthermore, the features were categorized into seven reliability groups, 106 reproducible RFs with ICC>0.75 were selected, highly correlated flavours were removed, Principal Component Analysis was used to convert 17 flavours to 1 attribute, the polynomial function was utilized to increase RFs, and Analysis of variance (ANOVA) was used to select the relevant attributes. Finally, 3 classifiers including Random Forest (RFC), Logistic regression (LR), and Multi-layer perceptron were applied to the preselected relevant attributes to predict binary PFS. In 5-fold cross-validation, 80% of 4 divisions were utilized to train the model, and the remaining 20% was utilized to evaluate the model. Further, the remaining fold was used for external nested testing. RESULTS: Reliability analysis indicated that most morphological features belong to the high-reliability category. By contrast, local intensity and statistical features extracted from images belong to the low-reliability category. In the tensor framework, the highest 5-fold cross-validation accuracy of 76.7%±3.3% with an external nested testing of 70.6%±6.7% resulted from the reproducible TR+polynomial function+ANOVA+LR algorithm while the accuracy of 70.0%±4.2% with the external nested testing of 67.7%±4.9% was achieved through the PCA fusion+RFC (non-tensor paradigm). CONCLUSIONS: This study demonstrated that using reproducible RFs as utilized within a tensor fusion radiomics framework, linked with ANOVA and LR, added value to prediction of progression-free survival outcome in head and neck cancer patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Reprodutibilidade dos Testes , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Retrospectivos
5.
Cancers (Basel) ; 15(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509228

RESUMO

One of the most common challenges in brain MRI scans is to perform different MRI sequences depending on the type and properties of tissues. In this paper, we propose a generative method to translate T2-Weighted (T2W) Magnetic Resonance Imaging (MRI) volume from T2-weight-Fluid-attenuated-Inversion-Recovery (FLAIR) and vice versa using Generative Adversarial Networks (GAN). To evaluate the proposed method, we propose a novel evaluation schema for generative and synthetic approaches based on radiomic features. For the evaluation purpose, we consider 510 pair-slices from 102 patients to train two different GAN-based architectures Cycle GAN and Dual Cycle-Consistent Adversarial network (DC2Anet). The results indicate that generative methods can produce similar results to the original sequence without significant change in the radiometric feature. Therefore, such a method can assist clinics to make decisions based on the generated image when different sequences are not available or there is not enough time to re-perform the MRI scans.

6.
Diagnostics (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238175

RESUMO

BACKGROUND: We aimed to predict Montreal Cognitive Assessment (MoCA) scores in Parkinson's disease patients at year 4 using handcrafted radiomics (RF), deep (DF), and clinical (CF) features at year 0 (baseline) applied to hybrid machine learning systems (HMLSs). METHODS: 297 patients were selected from the Parkinson's Progressive Marker Initiative (PPMI) database. The standardized SERA radiomics software and a 3D encoder were employed to extract RFs and DFs from single-photon emission computed tomography (DAT-SPECT) images, respectively. The patients with MoCA scores over 26 were indicated as normal; otherwise, scores under 26 were indicated as abnormal. Moreover, we applied different combinations of feature sets to HMLSs, including the Analysis of Variance (ANOVA) feature selection, which was linked with eight classifiers, including Multi-Layer Perceptron (MLP), K-Neighbors Classifier (KNN), Extra Trees Classifier (ETC), and others. We employed 80% of the patients to select the best model in a 5-fold cross-validation process, and the remaining 20% were employed for hold-out testing. RESULTS: For the sole usage of RFs and DFs, ANOVA and MLP resulted in averaged accuracies of 59 ± 3% and 65 ± 4% for 5-fold cross-validation, respectively, with hold-out testing accuracies of 59 ± 1% and 56 ± 2%, respectively. For sole CFs, a higher performance of 77 ± 8% for 5-fold cross-validation and a hold-out testing performance of 82 + 2% were obtained from ANOVA and ETC. RF+DF obtained a performance of 64 ± 7%, with a hold-out testing performance of 59 ± 2% through ANOVA and XGBC. Usage of CF+RF, CF+DF, and RF+DF+CF enabled the highest averaged accuracies of 78 ± 7%, 78 ± 9%, and 76 ± 8% for 5-fold cross-validation, and hold-out testing accuracies of 81 ± 2%, 82 ± 2%, and 83 ± 4%, respectively. CONCLUSIONS: We demonstrated that CFs vitally contribute to predictive performance, and combining them with appropriate imaging features and HMLSs can result in the best prediction performance.

7.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238180

RESUMO

BACKGROUND: Although handcrafted radiomics features (RF) are commonly extracted via radiomics software, employing deep features (DF) extracted from deep learning (DL) algorithms merits significant investigation. Moreover, a "tensor'' radiomics paradigm where various flavours of a given feature are generated and explored can provide added value. We aimed to employ conventional and tensor DFs, and compare their outcome prediction performance to conventional and tensor RFs. METHODS: 408 patients with head and neck cancer were selected from TCIA. PET images were first registered to CT, enhanced, normalized, and cropped. We employed 15 image-level fusion techniques (e.g., dual tree complex wavelet transform (DTCWT)) to combine PET and CT images. Subsequently, 215 RFs were extracted from each tumor in 17 images (or flavours) including CT only, PET only, and 15 fused PET-CT images through the standardized-SERA radiomics software. Furthermore, a 3 dimensional autoencoder was used to extract DFs. To predict the binary progression-free-survival-outcome, first, an end-to-end CNN algorithm was employed. Subsequently, we applied conventional and tensor DFs vs. RFs as extracted from each image to three sole classifiers, namely multilayer perceptron (MLP), random-forest, and logistic regression (LR), linked with dimension reduction algorithms. RESULTS: DTCWT fusion linked with CNN resulted in accuracies of 75.6 ± 7.0% and 63.4 ± 6.7% in five-fold cross-validation and external-nested-testing, respectively. For the tensor RF-framework, polynomial transform algorithms + analysis of variance feature selector (ANOVA) + LR enabled 76.67 ± 3.3% and 70.6 ± 6.7% in the mentioned tests. For the tensor DF framework, PCA + ANOVA + MLP arrived at 87.0 ± 3.5% and 85.3 ± 5.2% in both tests. CONCLUSIONS: This study showed that tensor DF combined with proper machine learning approaches enhanced survival prediction performance compared to conventional DF, tensor and conventional RF, and end-to-end CNN frameworks.

8.
BMC Bioinformatics ; 23(1): 410, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183055

RESUMO

BACKGROUND: We used a hybrid machine learning systems (HMLS) strategy that includes the extensive search for the discovery of the most optimal HMLSs, including feature selection algorithms, a feature extraction algorithm, and classifiers for diagnosing breast cancer. Hence, this study aims to obtain a high-importance transcriptome profile linked with classification procedures that can facilitate the early detection of breast cancer. METHODS: In the present study, 762 breast cancer patients and 138 solid tissue normal subjects were included. Three groups of machine learning (ML) algorithms were employed: (i) four feature selection procedures are employed and compared to select the most valuable feature: (1) ANOVA; (2) Mutual Information; (3) Extra Trees Classifier; and (4) Logistic Regression (LGR), (ii) a feature extraction algorithm (Principal Component Analysis), iii) we utilized 13 classification algorithms accompanied with automated ML hyperparameter tuning, including (1) LGR; (2) Support Vector Machine; (3) Bagging; (4) Gaussian Naive Bayes; (5) Decision Tree; (6) Gradient Boosting Decision Tree; (7) K Nearest Neighborhood; (8) Bernoulli Naive Bayes; (9) Random Forest; (10) AdaBoost, (11) ExtraTrees; (12) Linear Discriminant Analysis; and (13) Multilayer Perceptron (MLP). For evaluating the proposed models' performance, balance accuracy and area under the curve (AUC) were used. RESULTS: Feature selection procedure LGR + MLP classifier achieved the highest prediction accuracy and AUC (balanced accuracy: 0.86, AUC = 0.94), followed by an LGR + LGR classifier (balanced accuracy: 0.84, AUC = 0.94). The results showed that achieved AUC for the LGR + LGR classifier belonged to the 20 biomarkers as follows: TMEM212, SNORD115-13, ATP1A4, FRG2, CFHR4, ZCCHC13, FLJ46361, LY6G6E, ZNF323, KRT28, KRT25, LPPR5, C10orf99, PRKACG, SULT2A1, GRIN2C, EN2, GBA2, CUX2, and SNORA66. CONCLUSIONS: The best performance was achieved using the LGR feature selection procedure and MLP classifier. Results show that the 20 biomarkers had the highest score or ranking in breast cancer detection.


Assuntos
Neoplasias da Mama , Algoritmos , Teorema de Bayes , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Detecção Precoce de Câncer , Feminino , Perfilação da Expressão Gênica , Humanos , Aprendizado de Máquina , Máquina de Vetores de Suporte
9.
Clin Nutr ESPEN ; 51: 404-411, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36184235

RESUMO

BACKGROUND & AIMS: Considering that no standard therapy has yet been found for the novel coronavirus disease (COVID-19), identifying severe cases as early as possible, and such that treatment procedures can be escalated seems necessary. Hence, the present study aimed to develop a machine learning (ML) approach for automated severity assessment of COVID-19 based on clinical and paraclinical characteristics like serum levels of zinc, calcium, and vitamin D. METHODS: In this analytical cross-sectional study which was conducted from May 2020 to May 2021, clinical and paraclinical data sets of COVID-19-positive patients with known outcomes were investigated by combining statistical comparison and correlation methods with ML algorithms, including Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). RESULTS: Our work revealed that some patients' characteristics including age, gender, cardiovascular diseases as an underlying condition, and anorexia as disease symptoms, and also some parameters which are measurable in blood samples including FBS and serum levels of calcium are factors that can be considered in predicting COVID-19 severity. In this regard, we developed ML predictive models that indicated accuracy and precision scores >90% for disease severity prediction. The SVM algorithm indicated better results than other algorithms by having a precision of 95.5%, recall of 94%, F1 score of 94.8%, the accuracy of 95%, and AUC of 94%. CONCLUSIONS: Our results indicated that clinical and paraclinical features like calcium serum levels can be used for automated severity assessment of COVID-19.


Assuntos
COVID-19 , Cálcio , COVID-19/diagnóstico , Estudos Transversais , Humanos , Aprendizado de Máquina , Índice de Gravidade de Doença , Vitamina D , Vitaminas , Zinco
10.
Quant Imaging Med Surg ; 12(10): 4786-4804, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185056

RESUMO

Background: Due to the large variability in the prostate gland of different patient groups, manual segmentation is time-consuming and subject to inter-and intra-reader variations. Hence, we propose a U-Net model to automatically segment the prostate and its zones, including the peripheral zone (PZ), transitional zone (TZ), anterior fibromuscular stroma (AFMS), and urethra on the MRI [T2-weighted (T2W), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC)], and multimodality image fusion. Methods: A total of 91 eligible patients were retrospectively identified; 50 patients were considered for training process in a 10-fold cross-validation fashion and 41 ones for external test. Firstly, images were registered, and cropping was performed through a bounding box. In addition to T2W, DWI, and ADC separately, fused images were used. We considered three combinations, including T2W + DWI, T2W + ADC, and DWI + ADC, using wavelet transform. U-Net was applied to segment the prostate and its zones, AFMS, and urethra in a 10-fold cross-validation fashion. Eventually, dice score (DSC), intersection over union (IoU), precision, recall, and Hausdorff distance (HD) were used to evaluate the proposed model. Results: Using T2W images alone on the external test images, higher DSC, IoU, precision, and recall was achieved than the individual DWI and ADC images. DSC of 95%, 94%,98%, 94%, and 88%, IoU of 88%, 88.5%, 96%, 90%, and 79%, precision of 95.9%, 93.9%, 97.6%, 93.83%, and 87.82%, and recall of 94.2%, 94.2%, 98.3%, 94%, 87.93% was achieved for the whole prostate, PZ, TZ, urethra, and AFMS, respectively. The results clearly show that the best segmentation was obtained when the model is trained using T2W + DWI images. DSC of 99.06%, 99,05%, 99.04%, 99.09%, and 98.08%, IoU of 97.09%, 97.02%, 98.12%, 98.13%, and 96%, precision of 99.24%, 98.22%, 98.91%, 99.23%, and 98.9%, and recall of 98.3%, 99.8%, 99.02%, 98.93%, and 97.51% was achieved for the whole prostate, PZ, TZ, urethra, and AFMS, respectively. The min of the HD in the testing set for three combinations was 0.29 for the T2W + ADC procedure in the whole prostate class. Conclusions: Better performance was achieved using T2W + DWI images than T2W, DWI, and ADC separately or T2W + ADC and DWI + ADC in combination.

11.
Radiat Oncol ; 16(1): 182, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544468

RESUMO

BACKGROUND: We aimed to assess the feasibility of a dose painting (DP) procedure, known as simultaneous integrated boost intensity modulated radiation Therapy (SIB-IMRT), for treating prostate cancer with dominant intraprostatic lesions (DILs) based on multi-parametric magnetic resonance (mpMR) images and hierarchical clustering with a machine learning technique. METHODS: The mpMR images of 120 patients were used to create hierarchical clustering and draw a dendrogram. Three clusters were selected for performing agglomerative clustering. Then, the DIL acquired from the mpMR images of 20 patients were categorized into three groups to have them treated with a DP procedure being composed of three planning target volumes (PTVs) determined as PTV1, PTV2, and PTV3 in treatment plans. The DP procedure was carried out on the patients wherein a total dose of 80, 85 and 91 Gy were delivered to the PTV1, PTV2, and PTV3, respectively. Dosimetric and radiobiologic parameters [Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP)] of the DP procedure were compared with those of the conventional IMRT and Three-Dimensional Conformal Radiation Therapy (3DCRT) procedures carried out on another group of 20 patients. A post-treatment follow-up was also made four months after the radiotherapy procedures. RESULTS: All the dosimetric variables and the NTCPs of the organs at risks (OARs) revealed no significant difference between the DP and IMRT procedures. Regarding the TCP of three investigated PTVs, significant differences were observed between the DP versus IMRT and also DP versus 3DCRT procedures. At post-treatment follow-up, the DIL volumes and apparent diffusion coefficient (ADC) values in the DP group differed significantly (p-value < 0.001) from those of the IMRT. However, the whole prostate ADC and prostate-specific antigen (PSA) indicated no significant difference (p-value > 0.05) between the DP versus IMRT. CONCLUSIONS: The results of this comprehensive clinical trial illustrated the feasibility of our DP procedure for treating prostate cancer based on mpMR images validated with acquired patients' dosimetric and radiobiologic assessment and their follow-ups. This study confirms significant potential of the proposed DP procedure as a promising treatment planning to achieve effective dose escalation and treatment for prostate cancer. TRIAL REGISTRATION: IRCT20181006041257N1; Iranian Registry of Clinical Trials, Registered: 23 October 2019, https://en.irct.ir/trial/34305 .


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Análise por Conglomerados , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos
12.
J Xray Sci Technol ; 29(5): 835-850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219704

RESUMO

OBJECTIVE: To develop an ensemble a deep transfer learning model of CT images for predicting pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). METHODS: The data were obtained from the public dataset 'QIN-Breast' from The Cancer Imaging Archive (TCIA). CT images were gathered before and after the first cycle of NAC. CT images of 121 breast cancer patients were used to train and test the model. Among these patients, 58 achieved a pCR and 63 showed a non-pCR based pathology examination of surgical results after NAC. The dataset was split into training and testing subsets with a ratio of 7:3. In addition, the number of training samples in the dataset was increased from 656 to 1,968 by performing an image augmentation method. Two deep transfer learning models namely, DenseNet201 and ResNet152V2, and the ensemble model with a concatenation of two models, were trained and tested using CT images. RESULTS: The ensemble model obtained the highest accuracy of 100% on the testing dataset. Furthermore, we received the best performance of 100% in recall, precision and f1-score value for the ensemble model. This supports the fact that the ensemble model results in better-generalized model and leads to efficient framework. Although a 0.004 and 0.003 difference were seen between the AUC of two base models (DenseNet201 and ResNet152V2) and the proposed ensemble, this increase in the model quality is critical in medical research. T-SNE revealed that in the proposed ensemble, no points were clustered into the wrong class. These results expose the strong performance of the proposed ensemble. CONCLUSION: The study concluded that the ensemble model can increase the ability to predict breast cancer response to first-cycle NAC than two DenseNet201 and ResNet152V2 models.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Aprendizado de Máquina , Tomografia Computadorizada por Raios X
13.
J Xray Sci Technol ; 29(2): 229-243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33612539

RESUMO

BACKGROUND AND OBJECTIVE: Radiomics has been widely used in quantitative analysis of medical images for disease diagnosis and prognosis assessment. The objective of this study is to test a machine-learning (ML) method based on radiomics features extracted from chest CT images for screening COVID-19 cases. METHODS: The study is carried out on two groups of patients, including 138 patients with confirmed and 140 patients with suspected COVID-19. We focus on distinguishing pneumonia caused by COVID-19 from the suspected cases by segmentation of whole lung volume and extraction of 86 radiomics features. Followed by feature extraction, nine feature-selection procedures are used to identify valuable features. Then, ten ML classifiers are applied to classify and predict COVID-19 cases. Each ML models is trained and tested using a ten-fold cross-validation method. The predictive performance of each ML model is evaluated using the area under the curve (AUC) and accuracy. RESULTS: The range of accuracy and AUC is from 0.32 (recursive feature elimination [RFE]+Multinomial Naive Bayes [MNB] classifier) to 0.984 (RFE+bagging [BAG], RFE+decision tree [DT] classifiers) and 0.27 (mutual information [MI]+MNB classifier) to 0.997 (RFE+k-nearest neighborhood [KNN] classifier), respectively. There is no direct correlation among the number of the selected features, accuracy, and AUC, however, with changes in the number of the selected features, the accuracy and AUC values will change. Feature selection procedure RFE+BAG classifier and RFE+DT classifier achieve the highest prediction accuracy (accuracy: 0.984), followed by MI+Gaussian Naive Bayes (GNB) and logistic regression (LGR)+DT classifiers (accuracy: 0.976). RFE+KNN classifier as a feature selection procedure achieve the highest AUC (AUC: 0.997), followed by RFE+BAG classifier (AUC: 0.991) and RFE+gradient boosting decision tree (GBDT) classifier (AUC: 0.99). CONCLUSION: This study demonstrates that the ML model based on RFE+KNN classifier achieves the highest performance to differentiate patients with a confirmed infection caused by COVID-19 from the suspected cases.


Assuntos
COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...