Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
RSC Adv ; 14(1): 626-639, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173569

RESUMO

Recent advancements at the interface of microfluidics technology and light sheet fluorescence microscopy have opened the door for high-throughput and high-content investigation of C. elegans disease models. In this paper, we report on the development of a simple, miniaturized, and low-cost optofluidic platform that can be added to a conventional inverted fluorescent microscope for continuous light sheet imaging of transgenic worm populations with high lateral and axial resolutions of 1.1 µm and 2.4 µm, respectively. The optofluidic device is made entirely of PDMS with integrated optics for light sheet generation. Laser excitation is delivered to the device via a low-cost free space laser, and cross-sections of worm populations are imaged as they pass continuously through a channel. Results show the platform can image NW1229 whole worms with pan-neural fluorescent expression at a throughput of >20 worms per minute at L3 and young adult (YA) stages. As a benchmark test, we show that the low-cost device can quantify the reduced neuronal expressions of L3 and YA NW1229 worms when exposed to 500 µM 6-OHDA neurodegenerative agent. Following the benchmark validation, we utilized the platform in a novel application for imaging human alpha-synuclein reporter in populations of Parkinson's transgenic model (ERS100). Results show the ability of the low-cost platform to reliably detect and quantify the anomalous neural phenotypic changes in ERS100 populations at L3 and YA stages with high spatial resolution. The findings of this study show the potential of our low-cost optofluidic add-on platform to equip conventional fluorescent microscopes with light sheet capability for quantitative phenotypic studies of transgenic C. elegans at high resolution and throughput.

2.
Biosensors (Basel) ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887136

RESUMO

The rapid, inexpensive, and on-site detection of bacterial contaminants using highly sensitive and specific microfluidic sensors is attracting substantial attention in water quality monitoring applications. Cell-imprinted polymers (CIPs) have emerged as robust, cost-effective, and versatile recognition materials with selective binding sites for capturing whole bacteria. However, electrochemical transduction of the binding event to a measurable signal within a microfluidic device to develop easy-to-use, compact, portable, durable, and affordable sensors remains a challenge. For this paper, we employed CIP-functionalized microwires (CIP-MWs) with an affinity towards E. coli and integrated them into a low-cost microfluidic sensor to measure the conductometric transduction of CIP-bacteria binding events. The sensor comprised two CIP-MWs suspended perpendicularly to a PDMS microchannel. The inter-wire electrical resistance of the microchannel was measured before, during, and after exposure of CIP-MWs to bacteria. A decline in the inter-wire resistance of the sensor after 30 min of incubation with bacteria was detected. Resistance change normalization and the subsequent analysis of the sensor's dose-response curve between 0 to 109 CFU/mL bacteria revealed the limits of detection and quantification of 2.1 × 105 CFU/mL and 7.3 × 105 CFU/mL, respectively. The dynamic range of the sensor was 104 to 107 CFU/mL where the bacteria counts were statistically distinguishable from each other. A linear fit in this range resulted in a sensitivity of 7.35 µS per CFU/mL. Experiments using competing Sarcina or Listeria cells showed specificity of the sensor towards the imprinted E. coli cells. The reported CIP-MW-based conductometric microfluidic sensor can provide a cost-effective, durable, portable, and real-time solution for the detection of pathogens in water.


Assuntos
Técnicas Biossensoriais , Microfluídica , Escherichia coli , Técnicas Biossensoriais/métodos , Polímeros/química , Sítios de Ligação
3.
Mater Today Bio ; 22: 100764, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674780

RESUMO

Chronic wounds are among the major healthcare issues affecting millions of people worldwide with high rates of morbidity, losses of limbs and mortality. Microbial infection in wounds is a severe problem that can impede healing of chronic wounds. Accurate, timely and early detection of infections, and real time monitoring of various wound healing biomarkers related to infection can be significantly helpful in the treatment and care of chronic wounds. However, clinical methodologies of periodic assessment and care of wounds require physical visit to wound care clinics or hospitals and time-consuming frequent replacement of wound dressing patches, which also often adversely affect the healing process. Besides, frequent replacements of wound dressings are highly expensive, causing a huge amount of burden on the national health care systems. Smart bandages have emerged to provide in situ physiochemical surveillance in real time at the wound site. These bandages integrate smart sensors to detect the condition of wound infection based on various parameters, such as pH, temperature and oxygen level in the wound which reduces the frequency of changing the wound dressings and its associated complications. These devices can continually monitor the healing process, paving the way for tailored therapy and improved quality of patient's life. In this review, we present an overview of recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds in order to assess infection status. We have elaborated the recent progress in quantitative monitoring of several biomarkers important for assessing wounds infection status and its detection using smart biosensors. The review shows that real-time monitoring of wound status by quantifying specific biomarkers, such as pH, temperature and tissue oxygenation to significantly aid the treatment and care of chronic infected wounds.

4.
J Neurosci Res ; 101(12): 1814-1825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688406

RESUMO

Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in purinergic signaling in the nervous system. A link between Panx1 activity and neurodegenerative disorders including Parkinson's disease (PD) has been suggested, but experimental evidence is limited. Here, a zebrafish model of PD was produced by exposing panx1a+/+ and panx1a-/- zebrafish larvae to 6-hydroxydopamine (6-OHDA). Electrical stimulation in a microfluidic chip and quantitative real-time-qPCR of zebrafish larvae tested the role of Panx1 in both pathological and normal conditions. After 72-h treatment with 6-OHDA, the electric-induced locomotor activity of 5 days post fertilization (5dpf) panx1a+/+ larvae were reduced, while the stimulus did not affect locomotor activity of age-matched panx1a-/- larvae. A RT-qPCR analysis showed an increase in the expression of genes that are functionally related to dopaminergic signaling, like the tyrosine hydroxylase (th2) and the leucine-rich repeat kinase 2 (lrrk2). Extending the 6-OHDA treatment duration to 120 h caused a significant reduction in the locomotor response of 7dpf panx1a-/- larvae compared to the untreated panx1a-/- group. The RT-qPCR data showed a reduced expression of dopaminergic signaling genes in both genotypes. It was concluded that the absence of Panx1a channels compromised dopaminergic signaling in 6-OHDA-treated zebrafish larvae and that the increase in the expression of dopaminergic genes was transient, most likely due to a compensatory upregulation. We propose that zebrafish Panx1a models offer opportunities to shed light on PD's physiological and molecular basis. Panx1a might play a role on the progression of PD, and therefore deserves further investigation.

5.
Micromachines (Basel) ; 14(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763933

RESUMO

Controlling droplet sizes is one of the most important aspects of droplet generators used in biomedical research, drug discovery, high-throughput screening, and emulsion manufacturing applications. This is usually achieved by using multiple devices that are restricted in their range of generated droplet sizes. In this paper, a co-flow microfluidic droplet-generation device with flexible walls was developed such that the width of the continuous (C)-phase channel around the dispersed (D)-phase droplet-generating needle can be adjusted on demand. This actuation mechanism allowed for the adjustment of the C-phase flow velocity, hence providing modulated viscous forces to manipulate droplet sizes in a single device. Two distinct droplet-generation regimes were observed at low D-phase Weber numbers, i.e., a dripping regime at high- and medium-channel widths and a plug regime at low-channel widths. The effect of channel width on droplet size was investigated in the dripping regime under three modes of constant C-phase flow rate, velocity, and Capillary number. Reducing the channel width at a constant C-phase flow rate had the most pronounced effect on producing smaller droplets. This effect can be attributed to the combined influences of the wall effect and increased C-phase velocity, leading to a greater impact on droplet size due to the intensified viscous force. Droplet sizes in the range of 175-913 µm were generated; this range was ~2.5 times wider than the state of the art, notably using a single microfluidic device. Lastly, an empirical model based on Buckingham's Pi theorem was developed to predict the size of droplets based on channel width and height as well as the C-phase Capillary and Reynolds numbers.

6.
Integr Biol (Camb) ; 14(7): 162-170, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416255

RESUMO

Multi-phenotypic screening of multiple zebrafish larvae plays an important role in enhancing the quality and speed of biological assays. Many microfluidic platforms have been presented for zebrafish phenotypic assays, but multi-organ screening of multiple larvae, from different needed orientations, in a single device that can enable rapid and large-sample testing is yet to be achieved. Here, we propose a multi-phenotypic quadruple-fish microfluidic chip for simultaneous monitoring of heart activity and fin movement of 5-7-day postfertilization zebrafish larvae trapped in the chip. In each experiment, fin movements of four larvae were quantified in the dorsal view in terms of fin beat frequency (FBF). Positioning of four optical prisms next to the traps provided the lateral views of the four larvae and enabled heart rate (HR) monitoring. The device's functionality in chemical testing was validated by assessing the impacts of ethanol on heart and fin activities. Larvae treated with 3% ethanol displayed a significant drop of 13.2 and 35.8% in HR and FBF, respectively. Subsequent tests with cadmium chloride highlighted the novel application of our device for screening the effect of heavy metals on cardiac and respiratory function at the same time. Exposure to 5 $\mu$g/l cadmium chloride revealed a significant increase of 8.2% and 39.2% in HR and FBF, respectively. The device can be employed to monitor multi-phenotypic behavioral responses of zebrafish larvae induced by chemical stimuli in various chemical screening assays, in applications such as ecotoxicology and drug discovery.


Assuntos
Microfluídica , Peixe-Zebra , Animais , Larva , Cloreto de Cádmio , Etanol
7.
3 Biotech ; 12(10): 279, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36275358

RESUMO

Previous toxicity assessments of heavy metals on Drosophila are limited to investigating the survival, development rate, and climbing behaviour by oral administration while cardiac toxicity of these elements have not been investigated. We utilized a microfluidic device to inject known dosages of zinc (Zn) or cadmium (Cd) into the larvae's hemolymph to expose their heart directly and study their heart rate and arrhythmicity. The effect of heart-specific overexpression of metal responsive transcription factor (MTF-1) on different heartbeat parameters and survival of Drosophila larvae was investigated. The heart rate of wild-type larvae decreased by 24.8% or increased by 11.9%, 15 min after injection of 40 nL of 100 mM Zn or 10 mM Cd solution, respectively. The arrhythmicity index of wild-type larvae increased by 58.2% or 76.8%, after injection of Zn or Cd, respectively. MTF-1 heart overexpression ameliorated these effects completely. Moreover, it increased larvae's survival to pupal and adulthood stages and prolonged the longevity of flies injected with Zn and Cd. Our microfluidic-based cardiac toxicity assay illustrated that heart is an acute target of heavy metals toxicity, and MTF-1 overexpression in this tissue can ameliorate cardiac toxicity of Zn and Cd. The method can be used for cardiotoxicity assays with other pollutants in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03336-7.

8.
ACS Omega ; 7(18): 15529-15539, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571800

RESUMO

Rapid, inexpensive, and precise water salinity testing remains indispensable in water quality monitoring applications. Despite many sensors and commercialized devices to monitor seawater salinity, salt detection and quantification at very low levels of drinking water (below 120 ppm) have been overlooked. In this paper, we report on optimization of a low-cost microfluidic sensor to measure water salinity in the range of 1-120 ppm. The proposed design employs two copper microbridge wires suspended orthogonally in a PDMS microchannel to measure salinity based on the electrical resistance between the wires. The preliminary design of the sensor microchannel with a rectangular cross-section width (w) of 900 µm and height (h) of 500 µm could measure the water salinity in the range of 1-20 ppm in less than 1 min with detection sensitivity, limit of detection (LOD), and limit of quantification (LOQ) of 17.1 ohm/ohm·cm, 0.31 ppm, and 0.37 ppm, respectively. Data from the preliminary design was used for developing and validating a numerical model which was subsequently used for parametric studies and optimization to improve the sensor's performance. The optimized design demonstrated an order of magnitude increase in sensitivity (385 ohm/ohm·cm), a 6-fold wider detection range (1-120 ppm), and a 15-fold enhancement in miniaturization of the microfluidic channel (w = 200 µm and h = 150 µm) with LOD and LOQ of 0.39 and 0.44 ppm, respectively. In the future, the sensor can be integrated into a hand-held device to remove present impediments for low-cost and ubiquitous salinity surveillance of drinking water.

9.
Biotechnol J ; 17(6): e2100561, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332995

RESUMO

Electrical stimulation of brain or muscle activities has gained attention for studying the molecular and cellular mechanisms involved in electric-induced responses. We recently showed zebrafish's response to electricity. Here, we hypothesized that this response is affected by the dopaminergic signaling pathways. The effects of multiple dopamine agonists and antagonists on the electric response of 6 days-postfertilization zebrafish larvae were investigated using a microfluidic device with enhanced control of experimentation and throughput. All dopamine antagonists decreased locomotor activities, while dopamine agonists did not induce similar behaviors. The D2-selective dopamine agonist quinpirole enhanced the movement. Exposure to nonselective and D1-selective dopamine agonists apomorphine and SKF-81297 caused no significant change in the electric response. Exposing larvae that were pretreated with nonselective and D2-selective dopamine antagonists butaclamol and haloperidol to apomorphine and quinpirole, respectively, restored the electric locomotion. These results reveal a correlation between electric response and dopamine signaling pathway. Furthermore, they demonstrate that electric-induced zebrafish larvae locomotion can be conditioned by modulating dopamine receptor functions. Our electrofluidic assay has profound application potential for fundamental electric-induced response research and brain disorder studies especially those related to the dopamine imbalance and as a chemical screening method when investigating biological pathways and behaviors.


Assuntos
Dopamina , Peixe-Zebra , Animais , Apomorfina/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Eletricidade , Larva/metabolismo , Quimpirol/farmacologia , Transdução de Sinais , Peixe-Zebra/metabolismo
10.
Biotechnol J ; 17(1): e2100076, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480402

RESUMO

BACKGROUND: Microfluidic devices are being used for phenotypic screening of zebrafish larvae in fundamental and pre-clinical research. A challenge for the broad use of these microfluidic devices is their low throughput, especially in behavioral assays. Previously, we introduced the tail locomotion of a semi-mobile zebrafish larva evoked on-demand with electric signal in a microfluidic device. Here, we report the lessons learned for increasing the number of specimens from one to four larvae in this device. METHODS AND RESULTS: Multiple parameters including loading and testing time per fish and loading and orientation efficiencies were refined to optimize the performance of modified designs. Flow and electric field simulations within the final device provided insight into the flow behavior and functionality of traps when compared to previous single-larva devices. Outcomes led to a new design which decreased the testing time per larva by ≈60%. Further, loading and orientation efficiencies increased by more than 80%. Critical behavioral parameters such as response duration and tail beat frequency were similar in both single and quadruple-fish devices. CONCLUSION: The developed microfluidic device has significant advantages for greater throughput and efficiency when behavioral phenotyping is required in various applications, including chemical testing in toxicology and gene screening.


Assuntos
Dispositivos Lab-On-A-Chip , Peixe-Zebra , Animais , Larva
11.
J Biomed Opt ; 26(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34894114

RESUMO

SIGNIFICANCE: Selective plane illumination microscopy (SPIM) is an emerging fluorescent imaging technique suitable for noninvasive volumetric imaging of C. elegans. These promising microscopy systems, however, are scarce in academic and research institutions due to their high cost and technical complexities. Simple and low-cost solutions that enable conversion of commonplace wide-field microscopes to rapid SPIM platforms promote widespread adoption of SPIM by biologist for studying neuronal expressions of C. elegans. AIM: We sought to develop a simple and low-cost optofluidic add-on device that enables rapid and immobilization-free volumetric SPIM imaging of C. elegans with conventional fluorescent microscopes. APPROACH: A polydimethylsiloxane (PDMS)-based device with integrated optical and fluidic elements was developed as a low-cost and miniaturized SPIM add-on for the conventional wide-field microscope. The developed optofluidic chip contained an integrated PDMS cylindrical lens for on-chip generation of the light-sheet across a microchannel. Cross-sectional SPIM images of C. elegans were continuously acquired by the native objective of microscope as worms flowed in an L-shape microchannel and through the light sheet. RESULTS: On-chip SPIM imaging of C. elegans strains demonstrated possibility of visualizing the entire neuronal system in few seconds at single-neuron resolution, with high contrast and without worm immobilization. Volumetric visualization of neuronal system from the acquired cross-sectional two-dimensional images is also demonstrated, enabling the standard microscope to acquire three-dimensional fluorescent images of C. elegans. The full-width at half-maximum width of the point spread function was measured as 1.1 and 2.4 µm in the lateral and axial directions, respectively. CONCLUSION: The developed low-cost optofluidic device is capable of continuous SPIM imaging of C. elegans model organism with a conventional fluorescent microscope, at high speed, and with single neuron resolution.


Assuntos
Caenorhabditis elegans , Microscopia , Animais , Estudos Transversais , Iluminação
12.
Bioengineered ; 12(2): 9189-9215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709987

RESUMO

Rapid, inexpensive, and laboratory-free diagnostic of viral pathogens is highly critical in controlling viral pandemics. In recent years, nanopore-based sensors have been employed to detect, identify, and classify virus particles. By tracing ionic current containing target molecules across nano-scale pores, nanopore sensors can recognize the target molecules at the single-molecule level. In the case of viruses, they enable discrimination of individual viruses and obtaining important information on the physical and chemical properties of viral particles. Despite classical benchtop virus detection methods, such as amplification techniques (e.g., PCR) or immunological assays (e.g., ELISA), that are mainly laboratory-based, expensive and time-consuming, nanopore-based sensing methods can enable low-cost and real-time point-of-care (PoC) and point-of-need (PoN) monitoring of target viruses. This review discusses the limitations of classical virus detection methods in PoN virus monitoring and then provides a comprehensive overview of nanopore sensing technology and its emerging applications in quantifying virus particles and classifying virus sub-types. Afterward, it discusses the recent progress in the field of nanopore sensing, including integrating nanopore sensors with microfabrication technology, microfluidics and artificial intelligence, which have been demonstrated to be promising in developing the next generation of low-cost and portable biosensors for the sensitive recognition of viruses and emerging pathogens.


Assuntos
Técnicas Biossensoriais , Nanoporos , Vírion/isolamento & purificação , Aprendizado de Máquina , Microfluídica
13.
Colloids Surf B Biointerfaces ; 206: 111962, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34352699

RESUMO

With the COVID-19 pandemic, the threat of infectious diseases to public health and safety has become much more apparent. Viral, bacterial and fungal diseases have led to the loss of millions of lives, especially in the developing world. Diseases caused by airborne viruses like SARS-CoV-2 are difficult to control, as these viruses are easily transmissible and can circulate in the air for hours. To contain outbreaks of viruses such as SARS-CoV-2 and institute targeted precautions, it is important to detect them in air and understand how they infect their targets. Point-of-care (PoC) diagnostics and point-of-need (PoN) detection methods are necessary to rapidly test patient and environmental samples, so precautions can immediately be applied. Traditional benchtop detection methods such as ELISA, PCR and culture are not suitable for PoC and PoN monitoring, because they can take hours to days and require specialized equipment. Microfluidic devices can be made at low cost to perform such assays rapidly and at the PoN. They can also be integrated with air- and liquid-based sampling technologies to capture and analyze viruses from air and body fluids. Here, conventional and microfluidic virus detection methods are reviewed and compared. The use of air sampling devices to capture and concentrate viruses is discussed first, followed by a review of analysis methods such as immunoassays, RT-PCR and isothermal amplification in conventional and microfluidic platforms. This review provides an overview of the capabilities of microfluidics in virus handling and detection, which will be useful to infectious disease researchers, biomedical engineers, and public health agencies.


Assuntos
Microbiologia do Ar , Microfluídica , Vírus/isolamento & purificação , COVID-19 , Humanos , Pandemias , SARS-CoV-2
14.
Biomed Opt Express ; 12(6): 3607-3618, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221682

RESUMO

Caenorhabditis elegans (C. elegans) is an optically transparent nematode that shares many gene orthologs and homologs with humans. C. elegans are widely used in large populations for genetic studies relevant to human biology and disease. Success of such studies frequently relies on the ability to image C. elegans structure at high-resolution and high-speed. In this manuscript, we report on the feasibility and suitability of a high-speed variant of reflectance confocal microscopy, known as spectrally encoded confocal microscopy (SECM), for label-free imaging of C. elegans. The developed system utilizes near-infrared illumination in conjunction with refractive and diffractive optics to instantaneously image a confocal image line at a speed of up to 147 kHz with lateral and axial resolutions of 2µm and 10µm, respectively. Our imaging results from wild-type C. elegans and four mutant strains (MT2124, MT1082, CB61, and CB648) demonstrate the ability of SECM in revealing the overall geometry, key internal organs, and mutation-induced structural variations, opening the door for downstream integration of SECM in microfluidic platforms for high throughput structural imaging of C. elegans.

15.
Sci Total Environ ; 783: 147055, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088132

RESUMO

Environmental pollutants like microplastics are posing health concerns on aquatic animals and the ecosystem. Microplastic toxicity studies using Caenorhabditis elegans (C. elegans) as a model are evolving but methodologically hindered from obtaining statistically strong data sets, detecting toxicity effects based on microplastics uptake, and correlating physiological and behavioural effects at an individual-worm level. In this paper, we report a novel microfluidic electric egg-laying assay for phenotypical assessment of multiple worms in parallel. The effects of glucose and polystyrene microplastics at two concentrations on the worms' electric egg-laying, length, diameter, and length contraction during exposure to electric signal were studied. The device contained eight parallel worm-dwelling microchannels called electric traps, with equivalent electrical fields, in which the worms were electrically stimulated for egg deposition and fluorescently imaged for assessment of neuronal and microplastic uptake expression. A new bidirectional stimulation technique was developed, and the device design was optimized to achieve a testing efficiency of 91.25%. Exposure of worms to 100 mM glucose resulted in a significant reduction in their egg-laying and size. The effects of 1 µm polystyrene microparticles at concentrations of 100 and 1000 mg/L on the electric egg-laying behaviour, size, and neurodegeneration of N2 and NW1229 (expressing GFP pan-neuronally) worms were also studied. Of the two concentrations, 1000 mg/L caused severe egg-laying deficiency and growth retardation as well as neurodegeneration. Additionally, using single-worm level phenotyping, we noticed intra-population variability in microplastics uptake and correlation with the above physiological and behavioural phenotypes, which was hidden in the population-averaged results. Taken together, these results suggest the appropriateness of our microfluidic assay for toxicological studies and for assessing the phenotypical heterogeneity in response to microplastics.


Assuntos
Caenorhabditis elegans , Microplásticos , Animais , Ecossistema , Microfluídica , Plásticos/toxicidade
16.
Anal Chim Acta ; 1160: 338449, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-33894958

RESUMO

In this paper, we applied a curved-channel microfluidic device to separate DNA from PCR-inhibitor-containing water and simultaneously wash them into clean water for detection using a portable PCR thermocycler. Environmental DNA (eDNA) sampling has become an effective surveying approach for detecting rare organisms. However, low concentration eDNA molecules may be masked by PCR inhibitors during amplification and detection, increasing the risk of false negatives. Therefore, technologies for on-site DNA separation and washing are urgently needed. Our device consisted of a half-circle microchannel with a DNA-inhibitor sample inlet, a clean buffer inlet, and multiple outlets. By using the flow-induced inertial forces, 10 µm DNA-conjugated microparticles were focused at the inner-wall of the curved microchannel while separation from 1 µm inhibitor-conjugated microparticles and DNA washing were achieved simultaneously with the Dean flow. We achieved singleplex focusing, isolation and washing of 10 µm particles at an efficiency of 94.5 ± 2.0%. In duplex experiments with 1 µm and 10 µm particles, larger particles were washed with an efficiency of 92.1 ± 1.6% and a purity of 79 ± 2%. By surface-functionalizing the microparticles with affinity groups against Atlantic salmon DNA and humic acid (HA), and processing samples of various concentrations in our device, we achieved an effective purification and detection of DNA molecules using the portable PCR thermocycler. Our method significantly decreased PCR quantitation cycles from Cq > 38 to Cq = 30.35 ± 0.5, which confirmed enhancement of PCR amplification. The proposed device takes a promising step forward in sample preparation towards an integrated device that can be used for simultaneous purification and solution exchange of DNA in point-of-need environmental monitoring applications.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , DNA/genética , Tamanho da Partícula , Reação em Cadeia da Polimerase
17.
Comput Biol Med ; 132: 104314, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774273

RESUMO

In this paper, the heartbeat parameters of small model organisms, i.e. Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish), were quantified in-vivo in intact larvae using microfluidics and a novel MATLAB-based software. Among different developmental stages of flies and zebrafish, the larval stage is privileged due to biological maturity, optical accessibility, and the myogenic nature of the heart. Conventional methods for parametric quantification of heart activities are complex and mostly done on dissected, irreversibly immobilized, or anesthetized larvae. Microfluidics has helped with reversible immobilization without the need for anesthesia, but heart monitoring is still done manually due to challenges associated with the movement of floating organs and cardiac interruptions. In our MATLAB software applied to videos recorded in microfluidic-based whole-organism assays, we have used image segmentation to automatically detect the heart and extract the heartbeat signal based on pixel intensity variations of the most contractile region of the heart tube. The smoothness priors approach (SPA) was applied to remove the undesired low-frequency noises caused by environmental light changes or heart movement. Heart rate and arrhythmicity were automatically measured from the detrended heartbeat signal while other parameters including end-diastolic and end-systolic diameters, shortening distance, shortening time, fractional shortening, and shortening velocity were quantified for the first time in intact larvae, using M-mode images under bright field microscopy. The software was able to detect more than 94% of the heartbeats and the cardiac arrests in intact Drosophila larvae. Our user-friendly software enables in-vivo quantification of D. melanogaster and D. rerio larval heart functions in microfluidic devices, with the potential to be applied to other biological models and used for automatic screening of drugs and alleles that affect their heart.


Assuntos
Dispositivos Lab-On-A-Chip , Peixe-Zebra , Acesso à Informação , Animais , Drosophila , Drosophila melanogaster , Larva
18.
Lab Chip ; 21(5): 821-834, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33527103

RESUMO

In this paper, the novel effect of electric field (EF) on adult C. elegans egg-laying in a microchannel is discovered and correlated with neural and muscular activities. The quantitative effects of worm aging and EF strength, direction, and exposure duration on egg-laying are studied phenotypically using egg-count, body length, head movement, and transient neuronal activity readouts. Electric egg-laying rate increases significantly when worms face the anode and the response is EF-dependent, i.e. stronger (6 V cm-1) and longer EF (40 s) exposure result in a shorter egg laying response duration. Worm aging significantly deteriorates the electric egg-laying behaviour with an 88% decrease in the egg-count from day-1 to day-4 post young-adult stage. Fluorescent imaging of intracellular calcium dynamics in the main parts of the egg-laying neural circuit demonstrates the involvement and sensitivity of the serotonergic hermaphrodite specific neurons (HSNs), vulva muscles, and ventral cord neurons to the EF. HSN mutation also results in a reduced rate of electric egg-laying allowing the use of this technique for cellular screening and mapping of the neural basis of electrosensation in C. elegans. This novel assay can be parallelized and performed in a high-throughput manner for drug and gene screening applications.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Comportamento Animal , Proteínas de Caenorhabditis elegans/genética , Feminino , Mutação , Neurônios , Oviposição
19.
Integr Biol (Camb) ; 12(8): 211-220, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32877926

RESUMO

Multi-phenotypic screening of zebrafish larvae, such as monitoring the heart and tail activities, is important in biological assays. Microfluidic devices have been developed for zebrafish phenotypic assays, but simultaneous lateral-dorsal screening of the same larva in a single chip is yet to be achieved. We present a multi-phenotypic microfluidic device for monitoring of tail movement and heart rate (HR) of 5-7-day postfertilization zebrafish larvae. Tail movements were stimulated using electric current and quantified in terms of response duration (RD) and tail beat frequency (TBF). The positioning of a right-angle prism provided a lateral view of the larvae and enabled HR monitoring. Investigations were performed on zebrafish larvae exposed to 3% ethanol, 250 µM 6-hydroxydopamine (6-OHDA) or 1 mM levodopa. Larvae exposed to ethanol showed a significant drop in HR, whereas electric stimulation increased the HR temporarily. Larvae experienced a significant drop in RD, TBF and HR when exposed to 6-OHDA. HR was not affected by levodopa post-treatment, whereas RD and TBF were restored to normal levels. The results showed potential for applications that involve monitoring of cardiac and behavioral parameters in zebrafish larvae. Tests can be done using the same chip, without changing the larvae's orientation. This eliminates undue stress caused by reorientation, which may affect their behavior, and the use of separate devices to obtain dorsal and lateral views. The device can be implemented to improve multi-phenotypic and quantitative screening of zebrafish larvae in response to chemical and physical stimuli in different zebrafish disease models.


Assuntos
Comportamento Animal , Estimulação Elétrica , Dispositivos Lab-On-A-Chip , Larva/fisiologia , Peixe-Zebra/embriologia , Criação de Animais Domésticos , Animais , Desenho de Equipamento , Frequência Cardíaca , Processamento de Imagem Assistida por Computador , Microfluídica , Movimento , Fenótipo
20.
Micromachines (Basel) ; 11(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759767

RESUMO

In this paper, we report a novel microfluidic method to conduct a Caenorhabditis elegans electrotaxis movement assay and neuronal imaging on up to 16 worms in parallel. C. elegans is a model organism for neurodegenerative disease and movement disorders such as Parkinson's disease (PD), and for screening chemicals that alleviate protein aggregation, neuronal death, and movement impairment in PD. Electrotaxis of C. elegans in microfluidic channels has led to the development of neurobehavioral screening platforms, but enhancing the throughput of the electrotactic behavioral assay has remained a challenge. Our device consisted of a hierarchy of tree-like channels for worm loading into 16 parallel electrotaxis screening channels with equivalent electric fields. Tapered channels at the ends of electrotaxis channels were used for worm immobilization and fluorescent imaging of neurons. Parallel electrotaxis of worms was first validated against established single-worm electrotaxis phenotypes. Then, mutant screening was demonstrated using the NL5901 strain, carrying human α-synuclein in the muscle cells, by showing the associated electrotaxis defects in the average speed, body bend frequency (BBF), and electrotaxis time index (ETI). Moreover, chemical screening of a PD worm model was shown by exposing the BZ555 strain, expressing green fluorescence protein (GFP) in the dopaminergic neurons (DNs), to 6-hydroxydopamine neurotoxin. The neurotoxin-treated worms exhibited a reduction in electrotaxis swimming speed, BBF, ETI, and DNs fluorescence intensity. We envision our technique to be used widely in C. elegans-based movement disorder assays to accelerate behavioral and cellular phenotypic investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...