Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Breast J ; 2022: 8565490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711881

RESUMO

Introduction: Incidence of breast cancer (BC) in 2020 is about 2.26 million new cases. It is the first common cancer accounting for 11.7% of all cancer worldwide. Disease complications and the mortality rate of breast cancer are highly dependent on the early diagnosis. Therefore, novel human breast-imaging techniques play an important role in minimizing the breast cancer morbidity and mortality rate. Electrical impedance tomography (EIT) is a noninvasive technique to image the breast using the electrical impedance behavior of the body tissues. Objectives: The aims of this manuscript are as follows: (1) a comprehensive investigation of the accuracy of EIT for breast cancer diagnosis through searching pieces of evidence in the valid databases and (2) meta-analyses of the results. Methods: The systematic search was performed in the electronic databases including PubMed, Web of Science, EMBASE, Science Direct, ProQuest, Scopus, and Google Scholar without time and language limitation until January 2021. Search terms were "EIT" and "Breast Cancer" with their synonyms. Relevant studies were included based on PRISMA and study objectives. Quality of studies and risk of bias were performed by QUADAS-2 tools. Then, relevant data were extracted in Excel form. The hierarchical/bivariate meta-analysis was performed with "metandi" package for the ROC plot of sensitivity and specificity. Forest plot of the Accuracy index and double arcsine transformations was applied to stabilize the variance. The heterogeneity of the studies was evaluated by the forest plots, χ2 test (assuming a significance at the a-level of 10%), and the I2 statistic for the Accuracy index. Results: A total of 4027 articles were found. Finally, 12 of which met our criteria. Overall, these articles included studies of 5487 breast cancer patients. EIT had an overall pooled sensitivity and specificity of 75.88% (95% CI, 61.92% to 85.89%) and 82.04% (95% CI, 69.72% to 90.06%), respectively. The pooled diagnostic odds ratio was 14.37 (95% CI, 6.22% to 33.20%), and the pooled effect of accuracy was 0.79 with 95% CI (0.73, 0.83). Conclusions: This study showed that EIT can be used as a useful method alongside mammography. EIT sensitivity could not be compared with the sensitivity of MRI, but in terms of specificity, it can be considered as a new method that probably can get more attention. Furthermore, large-scale studies will be needed to support the evidence.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Impedância Elétrica , Feminino , Humanos , Mamografia , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
2.
Basic Clin Neurosci ; 13(5): 595-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37313030

RESUMO

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteristics. The high potential of brain EIT is established in real-time supervision and early recognition of cerebral brain infarction, hemorrhage, and other diseases. In this paper, we review the studies on the neurological applications of EIT. Methods: EIT calculates the internal electrical conductivity distribution of an organ by measuring its surface impedance. A series of electrodes are placed on the surface of the target tissue, and small alternating currents are injected. The related voltages are then observed and analyzed. The electrical permittivity and conductivity distributions inside the tissue are reconstructed by measuring the electrode voltages. Results: The electrical characteristic of biological tissues is remarkably dependent on their structures. Some tissues are better electrical conductors than the others since they have more ions that can carry the electrical charges. This difference is attributed to changes in cellular water content, membrane properties, and destruction of tight junctions within cell membranes. Conclusion: EIT is an extremely practical device for brain imaging, capturing fast electrical activities in the brain, imaging epileptic seizures, detecting intracranial bleeding, detecting cerebral edema, and diagnosing stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...