Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 6051-6066, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501387

RESUMO

In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.

2.
Inorg Chem ; 63(3): 1652-1673, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38194483

RESUMO

We synthesized a stable and reusable Schiff base complex of copper immobilized on core-shell magnetic nanoparticles [Cu(II)-SB/GPTMS@SiO2@Fe3O4] with simple, efficient, and available materials. A variety of characterization analyses including Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectrometry (EDX), and inductively coupled plasma (ICP) confirm that our synthesized nanocatalyst was obtained. The particle size distribution from the TEM image was obtained in the range of 42-55 nm. The existence of cupric species (Cu2+) in the catalyst was determined with XPS analysis and clearly indicated two peaks at 933.7 and 953.7 eV for Cu 2p3/2 and Cu 2p1/2, respectively. BET results showed that our catalyst synthesized with a mesoporous structure and with a specific area of 48.82 m2 g-1. After detailed characterization, the resulting nanocatalyst exhibited excellent catalytic performance for the explored catalytic reactions in the one-pot synthesis of polyhydroquinoline derivatives by the Hantzsch reaction of dimedone, ethyl acetoacetate, ammonium acetate, and various aldehydes under sustainable and mild conditions. The corresponding products 5a-l are achieved in yields of 88-97%. Additionally, density functional theory (DFT) calculations were carried out to investigate the electrostatic potential root (ESP), natural bond orbital (NBO), and molecular orbitals (MOs), drawing the reaction mechanism using the total energy of the reactant and product and the study of structural parameters.

3.
RSC Adv ; 13(48): 33566-33587, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020042

RESUMO

In the present study, mesalamine-functionalized on magnetic nanoparticles (mesalamine/GPTMS@SiO2@Fe3O4) is fabricated as an efficient and magnetically recoverable nanocatalyst. The as-prepared nanocatalyst was successfully synthesized in three steps using a convenient and low-cost method via modification of the surface of Fe3O4 nanoparticles with silica and GPTMS, respectively, to afford GPTMS@SiO2@Fe3O4. Finally, treatment with mesalamine as a powerful antioxidant generates the final nanocatalyst. Then, its structure was characterized by FT-IR, SEM, TEM, EDX, XRD, BET, VSM, and TGA techniques. The average size was found to be approximately 38 nm using TEM analysis and the average crystallite size was found to be approximately 27.02 nm using XRD analysis. In particular, the synthesized nanocatalyst exhibited strong thermal stability up to 400 °C and high magnetization properties. The activity of the synthesized nanocatalyst was evaluated in the tandem Knoevenagel-Michael cyclocondensation of various aromatic aldehydes, dimedone and malononitrile under a dry grinding method at room temperature to provide biologically active 2-amino-4H-benzo[b]pyran derivatives products in a short time with good yields. The presented procedure offers several advantages including gram-scale synthesis, good green chemistry metrics (GCM), easy fabrication of the catalyst, atom economy (AE), no use of column chromatography, and avoiding the generation of toxic materials. Furthermore, the nanocatalyst can be reused for 8 cycles with no loss of performance by using an external magnet.

4.
RSC Adv ; 13(42): 29121-29140, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800129

RESUMO

In the present study, a copper(ii) complex containing a pyridine-2-carbaldehyde ligand and its direct binding onto ethylenediamine functionalized with Fe3O4@SiO2 nanoparticles [Cu(ii)-Schiff base-(CH2)3-SiO2@Fe3O4] as a heterogeneous magnetic nanocatalyst can be easily prepared using a multi-step method. Next, the structural and magnetic properties of the synthesized nanoparticles were identified using Fourier-transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), PXRD (Powder X-ray diffraction), Brunauer-Emmett-Teller (BET), and energy-dispersive X-ray spectrometry (EDX) techniques. TEM images reveal that the average particle size distribution was found to be in the range of 45-55 nm with spherical shape. The PXRD analysis indicated that the crystallite size was found to be 35.2 nm. The synthesized nanocatalyst exhibited a very good catalytic ability in the synthesis reaction of pyran derivatives and 2-benzylidenemalononitrile derivatives. Product 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydrobenzo[b]pyran 4e was achieved in 97% yield with a TON of 129.3 and a TOF of 646.6 h-1 and product 2-(4-cyanobenzylidene)malononitrile 3j was achieved in 96% yield with a TON of 128 and a TOF of 984.6 h-1. In addition, the synthesized nanocatalyst was easily separated from the reaction mixture by a magnet and used 7 consecutive times without significant loss of catalytic activity. Also, leaching of copper metal from the synthesized nanocatalyst was very insignificant for this reaction.

5.
RSC Adv ; 13(19): 12869-12888, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37114026

RESUMO

In the current study, an environmentally friendly and facile method was proposed for designing and constructing a catalyst with Ni(ii) attached to a picolylamine complex on 1,3,5-triazine-immobilized Fe3O4 core-shell magnetic nanoparticles (NiII-picolylamine/TCT/APTES@SiO2@Fe3O4) via a stepwise procedure. The as-synthesized nanocatalyst was identified and characterized via Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FE-SEM), inductively coupled plasma (ICP), and energy-dispersive X-ray spectrometry (EDX). The obtained results from the BET analysis indicated that the synthesized nanocatalyst had high specific area (53.61 m2 g-1) and mesoporous structure. TEM observations confirmed the particle size distribution was in the range 23-33 nm. Moreover, the binding energy peaks observed at 855.8 and 864.9 eV in the XPS analysis confirmed the successful and stable attachment of Ni(ii) on the surface of the picolylamine/TCT/APTES@SiO2@Fe3O4. The as-fabricated catalyst was used to produce pyridine derivatives by the one-pot pseudo-four component reaction of malononitrile, thiophenol, and a variety of aldehyde derivatives under solvent-free conditions or EG at 80 °C. The highest yield achieved was 97% for compound 4d in EG at 80 °C with a TOF of 823 h-1 and TON of 107. It was found that the used catalyst was recyclable for eight consecutive cycles. On the basis of ICP analysis, the results indicated that the Ni leaching was approximately 1%.

6.
Anal Chim Acta ; 1222: 339986, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35934419

RESUMO

Two modes of electromembrane extraction (EME) were evaluated in this work, one using deep eutectic solvents (DESs) as liquid membrane, and another was gel electromembrane extraction (G-EME) based on solid agarose membrane. Both EME modes have eliminated organic solvents and are recognized as green strategies. Unlike classic EME in which polypropylene membrane and organic extracting solvents play an essential role in the extraction process, new modes of EME are based on biodegradable membranes and aqueous extracting solutions. Approaches of EME based on the new designs follow the green chemistry principles. Each mode of EME was evaluated for the determination of polar and non-polar bases drugs from human urine samples using high-performance liquid chromatography (HPLC) equipped with a diode array detector (DAD). EME using DES A was suitable for determining polar and non-polar bases drugs in a large polarity window. While extraction recoveries for all six drugs studied by G-EME were lower than EME using DES A. Comparing the two EME modes shows similar results in the analytical figures of merit. However, differences in extraction recoveries of the drugs by two EME modes were observed which is related to the difference in membranes structure. Our findings indicate that the differences between membranes properties used in two EME modes, including the permeability, hydrophilicity, hydrophobicity, and variety of interactions, are influencer factors on extraction efficiency. The two EME modes provided good linearity in the ranges of 16-100 and 19-100 µg. L-1 for G-EME and EME using DES A, respectively with (r2 > 0.993). Also, the detection limits (LODs) were 19-32 and 19-29 µg. L-1 for G-EME and EME using DES A, respectively.


Assuntos
Solventes Eutéticos Profundos , Membranas Artificiais , Cromatografia Líquida de Alta Pressão , Humanos , Sefarose/química , Solventes/química
7.
Inorg Chem ; 61(2): 992-1010, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962386

RESUMO

An efficient and heterogeneous novel magnetic silica-coated picolylaminecopper complex [Fe3O4@SiO2@GP/Picolylamine-Cu(II)] was synthesized, characterized, and employed as a magnetically recoverable nanocatalyst in Biginelli condensation for the preparation of biologically active 3,4-dihydropyrimidinones. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was synthesized easily using chemical attachment of the picolylaminecompound on Fe3O4@SiO2@GP, followed by treatment with copper salt in ethanol under reflux conditions. Fe3O4@SiO2@GP/Picolylamine-Cu(II) was affirmed by various analyses such as Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, vibrating-sample magnetometry, field-emission scanning electron microscopy, transmission electron microscopy, DLS, inductively coupled plasma, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. The resulting catalyst system was successfully used in the Biginelli reaction through a variety of compounds such as aromatic aldehyde, urea, and ethyl acetoacetate under solvent-free conditions or ethylene glycol at 80 °C and yielded the desired products with high conversions with powerful reusability. The current approach was convenient and clean, and only 0.01 g of the catalyst could be used to perform the reaction. The easy work-up procedure, gram-scale synthesis, usage of nontoxic solvent, improved yield, short reaction times, and high durability of the catalyst are several remarkable advantages of the current approach. Also, the Fe3O4@SiO2@GP/Picolylamine-Cu(II) nanocatalyst could be recycled by an external magnet for eight runs with only a significant loss in the product yields.

8.
ACS Omega ; 6(39): 25608-25622, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632217

RESUMO

An ecofriendly inorganic-organic hybrid and novel Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was successfully designed and prepared from readily available chemicals. In this method, a Schiff base complex as a linker is utilized to protect copper nanoparticles to the core-shell Fe3O4 exterior without agglomeration. The resulted Schiff base complex of copper coated on epoxy-modified Fe3O4@SiO2 MNPs was characterized and confirmed via different analyses such as FT-IR, TGA, XRD, VSM, FE-SEM, TEM, ICP, EDX, and BET. The novel catalyst was examined for the synthesis of various chromene-annulated heterocycles through the one-pot three component reaction of aromatic aldehydes, various phenols (2-hydroxynaphthalene-1,4-dione/resorcinol/ß-naphthol), and malononitrile in ethanol at reflux conditions. This method includes important aspects like no usage of column chromatography, very short reaction times, simplicity of product isolation using ethanol, excellent yields, simple procedures, and magnetic recoverability of the catalyst. All in all, our method makes a novel and significant advancement in the synthesis of various chromene-annulated heterocycles.

9.
Comb Chem High Throughput Screen ; 24(9): 1465-1475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33030128

RESUMO

AIMS AND OBJECTIVE: In the current study, environmentally benign and cost-effective procedures were suggested for the preparation of carboxy group functionalized imidazolium salts, including [Cmmim]BF4 - or [Cmmim]Br- as a new, reusable Brønsted acidic ionic liquid (BAIL) catalyst. Then, the catalytic performance of [Cmmim]BF4 - or [Cmmim]Br- were successfully inspected towards the three---components one---pot preparation of pyrano[2,3-d]pyrimidinone derivatives 4a-4q. The mentioned procedures show short reaction times, easy work-up procedure, green conditions, high yields of the products, high potent of recovering, and reusing capability. The current study is useful and adequate for the application and development of imidazolium salts on the basis of green chemistry principles. MATERIALS AND METHODS: An aromatic aldehyde (1 mmol), barbituric acid (1 mmol), and malononitrile (1 mmol) were placed in a round---bottomed flask containing ethanol (5 mL). BAILs A and B (0.1 mmol, 10 mol%) were added to the mixture. The suspension was magnetically stirred at room temperature for an appropriate time (Table 2). After completion of the reaction, which was monitored by TLC (n---hexane:ethyl acetate = 3:1), the pure product was filtered off to separate the catalyst, washed with water, and recrystallized from ethanol to afford the pure compound. After separation of the product, the catalyst was recovered by evaporation of water, washed with Et2O, dried under vacuum for 2 h, and reused for the same reaction. RESULTS: The mentioned procedure shows short reaction times, easy work-up procedure, green conditions, high yields of the products, and high potent of recovering and reusing capability. CONCLUSION: In this study, we unveiled the synthesis of a new acetic acid functionalized ionic liquids [Cmmim]BF4 - BAIL A or [Cmmim]Br- BAIL B and their application for the preparation of pyrano[2,3-d]pyrimidinone derivatives via a three-component reaction among various aromatic aldehydes, barbituric acid, and malononitrile under mild and metal-free conditions. A wide range of pyrano[2,3-d]pyrimidinone derivatives bearing diverse functional groups was obtained in short reaction and excellent yields. Operational simplicity, recoverability, and reusability of catalysts, cheap and chemically stable reagents, high catalytic activity, easy work-up, and the eco-friendly procedure, make this method environmentally benign and cost-effective.


Assuntos
Imidazóis/química , Piranos/síntese química , Pirimidinonas/síntese química , Imidazóis/economia , Estrutura Molecular , Piranos/química , Piranos/economia , Pirimidinonas/química , Pirimidinonas/economia , Sais/química , Sais/economia
10.
Comb Chem High Throughput Screen ; 19(9): 720-727, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27396916

RESUMO

A convenient procedure for the preparation of 1-(1-Propylsulfonic)-3- methylimidazolium thiocyanate as a novel Brønsted acidic ionic liquid thiocyanation agent and highly efficient heterogeneous catalytic is described. This catalyst is used in regioselective thiocyanation of indoles, anilines, pyrroles and their derivatives (aromatic and heteroaromatic organic compounds) in the presence of H2O2 as a mild and oxidant in EtOH:H2O (1:1 v/v). These reactions are performed under mild and simple conditions and give regioselective products in high yields and short reaction time.


Assuntos
Compostos de Anilina/química , Indóis/química , Pirróis/química , Tiocianatos/química , Ácidos , Catálise , Líquidos Iônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...