Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 57(4): 1342-1350, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180630

RESUMO

ABSTRACT: The variety of products derived from milk, without or with lactose, encourages the development of more effective analytical techniques that can be applied to the quality control of both the production line and the final products. Thus, in this work an efficient and minimally invasive method for the detection of lactose was proposed, using a biosensor containing the enzyme lactase (LAC) immobilised on carbon nanotubes (CNTs) that, when reacting with lactose, emit an electrochemical signal. This biosensor was connected to a potentiostat, and its electrochemical cell was composed of the following three electrodes: reference electrode (Ag/AgCl), auxiliary electrode (platinum wire), and working electrode (biosensor) on which graphite (carbon) paste (CP), CNTs, and LAC were deposited. The transmission electron microscopy and scanning electron microscopy were used in the characterisation of the composite morphology, indicating excellent interactions between the CNTs and LAC. The sensitivity of the CP/LAC/CNT biosensor was determined as 5.67 µA cm-2.mmol-1 L and detection limits around 100 × 10-6 mol L-1 (electrode area = 0.12 cm2) and an increase in the stability of the system was observed with the introduction of CNTs because, with about 12 h of use, there was no variation in the signal (current). The results indicate that the association between the CNTs and LAC favoured the electrochemical system.

2.
Carbohydr Polym ; 214: 152-158, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30925984

RESUMO

Cocoa shell was evaluated as a precursor for cellulose nanofibrils (NFCs) using mechanical defibrillation. Its morphology was analysed using optical microscopy and scanning electron microscopy with field emission. Rheological and mechanical behaviour were evaluated through flow curves with a strain rate ranging from 0 to 300 s-1 at 25 °C and by means of oscillatory frequency sweeps (0.01 Hz-10 Hz) and shear stress (3 Pa). The thermal-mechanical behaviour was determined by a temperature sweep with a heating rate of 3 °C min-1 and a temperature range of 25 °C-100 °C. Micrographs identified the presence of protoxilem with a mean diameter of 23.34 nm. The flow curve showed the characteristic behaviour of a pseudoplastic fluid. The storage module (G') and the loss modulus (G″) were dependent on the frequency applied, indicating that the material exhibits a weak gel characteristic. The viscoelastic characteristics were influenced by temperature. Therefore, cocoa shell is a new alternative in the production of nanocellulose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...