Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 654, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956457

RESUMO

BACKGROUND: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos/genética , Genótipo , Vigor Híbrido , Carne , Alelos
2.
J Appl Genet ; 65(2): 383-394, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38528244

RESUMO

Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.


Assuntos
Genômica , Endogamia , Bovinos/genética , Animais , Feminino , Genótipo , Homozigoto , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 13(1): 21900, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082150

RESUMO

Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of lactation because of a sudden irreversible loss of Ca incorporated into colostrum and milk. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, commonly known as milk fever, whereas a larger proportion of cows develop subclinical hypocalcemia. The main goal of this study was to identify causative mutations and candidate genes affecting postpartum blood calcium concentration in Holstein cows. Data consisted of blood calcium concentration measured in 2513 Holstein cows on the first three days after parturition. All cows had genotypic information for 79 k SNP markers. Two consecutive rounds of imputation were performed: first, the 2513 Holstein cows were imputed from 79 k to 312 k SNP markers. This imputation was performed using a reference set of 17,131 proven Holstein bulls with 312 k SNP markers. Then, the 2513 Holstein cows were imputed from 312 k markers to whole-genome sequence data. This second round of imputation used 179 Holstein animals from the 1000 Bulls Genome Project as a reference set. Three alternative phenotypes were evaluated: (1) total calcium concentration in the first 24 h postpartum, (2) total calcium concentration in the first 72 h postpartum calculated as the area under the curve; and (3) the recovery of total calcium concentration calculated as the difference in total calcium concentration between 72 and 24 h. The identification of genetic variants associated with these traits was performed using a two-step mixed model-based approach implemented in the R package MixABEL. The most significant variants were located within or near genes involved in calcium homeostasis and vitamin D transport (GC), calcium and potassium channels (JPH3 and KCNK13), energy and lipid metabolism (CA5A, PRORP, and SREBP1), and immune response (IL12RB2 and CXCL8), among other functions. This work provides the foundation for the development of novel breeding and management tools for reducing the incidence of periparturient hypocalcemia in dairy cattle.


Assuntos
Doenças dos Bovinos , Hipocalcemia , Transtornos Puerperais , Gravidez , Feminino , Humanos , Bovinos , Animais , Masculino , Hipocalcemia/genética , Hipocalcemia/veterinária , Hipocalcemia/metabolismo , Cálcio/metabolismo , Período Pós-Parto/genética , Parto/fisiologia , Lactação/fisiologia , Leite/metabolismo , Cálcio da Dieta/metabolismo , Dieta/veterinária
4.
Front Genet ; 12: 627055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815465

RESUMO

Carcass and meat quality are two important attributes for the beef industry because they drive profitability and consumer demand. These traits are of even greater importance in crossbred cattle used in subtropical and tropical regions for their superior adaptability because they tend to underperform compared to their purebred counterparts. Many of these traits are challenging and expensive to measure and unavailable until late in life or after the animal is harvested, hence unrealistic to improve through traditional phenotypic selection, but perfect candidates for genomic selection. Before genomic selection can be implemented in crossbred populations, it is important to explore if pleiotropic effects exist between carcass and meat quality traits. Therefore, the objective of this study was to identify genomic regions with pleiotropic effects on carcass and meat quality traits in a multibreed Angus-Brahman population that included purebred and crossbred animals. Data included phenotypes for 10 carcass and meat quality traits from 2,384 steers, of which 1,038 were genotyped with the GGP Bovine F-250. Single-trait genome-wide association studies were first used to investigate the relevance of direct additive genetic effects on each carcass, sensory and visual meat quality traits. A second analysis for each trait included all other phenotypes as covariates to correct for direct causal effects from identified genomic regions with pure direct effects on the trait under analysis. Five genomic windows on chromosomes BTA5, BTA7, BTA18, and BTA29 explained more than 1% of additive genetic variance of two or more traits. Moreover, three suggestive pleiotropic regions were identified on BTA10 and BTA19. The 317 genes uncovered in pleiotropic regions included anchoring and cytoskeletal proteins, key players in cell growth, muscle development, lipid metabolism and fat deposition, and important factors in muscle proteolysis. A functional analysis of these genes revealed GO terms directly related to carcass quality, meat quality, and tenderness in beef cattle, including calcium-related processes, cell signaling, and modulation of cell-cell adhesion. These results contribute with novel information about the complex genetic architecture and pleiotropic effects of carcass and meat quality traits in crossbred beef cattle.

5.
Front Genet ; 11: 538640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101375

RESUMO

Tenderness is a major quality attribute for fresh beef steaks in the United States, and meat quality traits in general are suitable candidates for genomic research. The objectives of the present analysis were to (1) perform genome-wide association (GWA) analysis for marbling, Warner-Bratzler shear force (WBSF), tenderness, and connective tissue using whole-genome data in an Angus population, (2) identify enriched pathways in each GWA analysis; (3) construct a protein-protein interaction network using the associated genes and (4) perform a µ-calpain proteolysis assessment for associated structural proteins. An Angus-sired population of 2,285 individuals was assessed. Animals were transported to a commercial packing plant and harvested at an average age of 457 ± 46 days. After 48 h postmortem, marbling was recorded by graders' visual appraisal. Two 2.54-cm steaks were sampled from each muscle for recording of WBSF, and tenderness, and connective tissue by a sensory panel. The relevance of additive effects on marbling, WBSF, tenderness, and connective tissue was evaluated on a genome-wide scale using a two-step mixed model-based approach in single-trait analysis. A tissue-restricted gene enrichment was performed for each GWA where all polymorphisms with an association p-value lower than 1 × 10-3 were included. The genes identified as associated were included in a protein-protein interaction network and a candidate structural protein assessment of proteolysis analyses. A total of 1,867, 3,181, 3,926, and 3,678 polymorphisms were significantly associated with marbling, WBSF, tenderness, and connective tissue, respectively. The associate region on BTA29 (36,432,655-44,313,046 bp) harbors 13 highly significant markers for meat quality traits. Enrichment for the GO term GO:0005634 (Nucleus), which includes transcription factors, was evident. The final protein-protein network included 431 interations between 349 genes. The 42 most important genes based on significance that encode structural proteins were included in a proteolysis analysis, and 81% of these proteins were potential µ-Calpain substrates. Overall, this comprehensive study unraveled genetic variants, genes and mechanisms of action responsible for the variation in meat quality traits. Our findings can provide opportunities for improving meat quality in beef cattle via marker-assisted selection.

6.
J Dairy Sci ; 103(12): 11618-11627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981736

RESUMO

The use of information across populations is an attractive approach to increase the accuracy of genomic predictions for numerically small breeds and traits that are time-consuming and difficult to measure, such as male fertility in cattle. This study was conducted to evaluate genomic prediction of Jersey bull fertility using an across-country reference population combining records from the United States and Australia. The data set consisted of 1,570 US Jersey bulls with sire conception rate (SCR) records, 603 Australian Jersey bulls with semen fertility value (SFV) records and SNP genotypes for roughly 90,000 loci. Both SCR and SFV are evaluations of service sire fertility based on cow field data, and both are intended as phenotypic evaluations because the estimates include genetic and nongenetic effects. Within- and across-country genomic predictions were evaluated using univariate and bivariate genomic best linear unbiased prediction models. Predictive ability was assessed in 5-fold cross-validation using the correlation between observed and predicted fertility values and mean squared error of prediction. Within-country genomic predictions exhibited predictive correlations of around 0.28 and 0.02 for the United States and Australia, respectively. The Australian Jersey population is genetically diverse and small in size, so careful selection of the reference population by including only closely related animals (e.g., excluding New Zealand bulls, which is a less-related population) increased the predictive correlations up to 0.20. Notably, the use of bivariate models fitting all US Jersey records and the optimized Australian population resulted in predictive correlations around of 0.24 for SFV values, which is a relative increase in predictive ability of 20%. Conversely, for predicting SCR values, the use of an across-country reference population did not outperform the standard approach using pure US Jersey reference data set. Our findings indicate that genomic prediction of male fertility in dairy cattle is feasible, and the use of an across-country reference population would be beneficial when local populations are small and genetically diverse.


Assuntos
Bovinos/genética , Fertilidade/genética , Genômica , Animais , Conjuntos de Dados como Assunto , Feminino , Fertilização , Genômica/métodos , Genótipo , Modelos Lineares , Masculino , Valores de Referência
7.
J Dairy Sci ; 103(4): 3304-3311, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32063375

RESUMO

Service sire has been recognized as an important factor affecting dairy herd fertility. Our group has reported promising results on gene mapping and genomic prediction of dairy bull fertility using autosomal SNP markers. Little is known, however, about the genetic contribution of sex chromosomes, which are enriched in genes related to sexual development and reproduction. As such, the main goal of this study was to investigate the effect of SNP markers on X and Y chromosomes (BTAX and BTAY, respectively) on sire conception rate (SCR) in US Holstein bulls. The analysis included a total of 5,014 bulls with SCR records and genotypes for roughly 291k SNP located on the autosomes, 1.5k SNP located on the pseudoautosomal region (PAR), 13.7k BTAX-specific SNP, and 24 BTAY-specific SNP. We first performed genomic scans of the sex chromosomes, and then we evaluated the genomic prediction of SCR including BTAX SNP markers in the predictive models. Two markers located on PAR and 3 markers located on the X-specific region showed significant associations with sire fertility. Interestingly, these regions harbor genes, such as FAM9B, TBL1X, and PIH1D3, that are directly implicated in testosterone concentration, spermatogenesis, and sperm motility. On the other hand, BTAY showed very low genetic variability, and none of the segregating markers were associated with SCR. Notably, model predictive ability was largely improved by including BTAX markers. Indeed, the combination of autosomal with BTAX SNP delivered predictive correlations around 0.343, representing an increase in accuracy of about 7.5% compared with the standard whole autosomal genome approach. Overall, this study provides evidence of the importance of both PAR and X-specific regions in male fertility in dairy cattle. These findings may help to improve conception rates in dairy herds through accurate genome-guided decisions on bull fertility.


Assuntos
Bovinos/genética , Fertilidade/genética , Marcadores Genéticos , Cromossomos Sexuais , Animais , Bovinos/fisiologia , Mapeamento Cromossômico , Feminino , Fertilização/genética , Genoma , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Regiões Pseudoautossômicas , Motilidade dos Espermatozoides/genética , Espermatogênese/genética
8.
BMC Genomics ; 20(1): 258, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940077

RESUMO

BACKGROUND: Fertility is among the most important economic traits in dairy cattle. Genomic prediction for cow fertility has received much attention in the last decade, while bull fertility has been largely overlooked. The goal of this study was to assess genomic prediction of dairy bull fertility using markers with large effect and functional annotation data. Sire conception rate (SCR) was used as a measure of service sire fertility. Dataset consisted of 11.5 k U.S. Holstein bulls with SCR records and about 300 k single nucleotide polymorphism (SNP) markers. The analyses included the use of both single-kernel and multi-kernel predictive models fitting either all SNPs, markers with large effect, or markers with presumed functional roles, such as non-synonymous, synonymous, or non-coding regulatory variants. RESULTS: The entire set of SNPs yielded predictive correlations of 0.340. Five markers located on chromosomes BTA8, BTA9, BTA13, BTA17, and BTA27 showed marked dominance effects. Interestingly, the inclusion of these five major markers as fixed effects in the predictive models increased predictive correlations to 0.403, representing an increase in accuracy of about 19% compared with the standard model. Single-kernel models fitting functional SNP classes outperformed their counterparts using random sets of SNPs, suggesting that the predictive power of these functional variants is driven in part by their biological roles. Multi-kernel models fitting all the functional SNP classes together with the five major markers exhibited predictive correlations around 0.405. CONCLUSIONS: The inclusion of markers with large effect markedly improved the prediction of dairy sire fertility. Functional variants exhibited higher predictive ability than random variants, but did not outperform the standard whole-genome approach. This research is the foundation for the development of novel strategies that could help the dairy industry make accurate genome-guided selection decisions on service sire fertility.


Assuntos
Fertilidade/genética , Modelos Genéticos , Animais , Biomarcadores/metabolismo , Bovinos , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
9.
J Dairy Sci ; 102(4): 3230-3240, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30712930

RESUMO

Service sire has a major effect on reproductive success in dairy cattle. Recent studies have reported accurate predictions for Holstein bull fertility using genomic data. The objective of this study was to assess the feasibility of genomic prediction of sire conception rate (SCR) in US Jersey cattle using alternative predictive models. Data set consisted of 1.5k Jersey bulls with SCR records and 95k SNP covering the entire genome. The analyses included the use of linear and Gaussian kernel-based models fitting either all the SNP or subsets of markers with presumed functional roles, such as SNP significantly associated with SCR or SNP located within or close to annotated genes. Model predictive ability was evaluated using 5-fold cross-validation with 10 replicates. The entire SNP set exhibited predictive correlations around 0.30. Interestingly, either SNP marginally associated with SCR or genic SNP achieved higher predictive abilities than their counterparts using random sets of SNP. Among alternative SNP subsets, Gaussian kernel models fitting significant SNP achieved the best performance with increases in predictive correlation up to 7% compared with the standard whole-genome approach. Notably, the use of a multi-breed reference population including the entire US Holstein SCR data set (11.5k bulls) allowed us to achieve predictive correlations up to 0.315, gaining 8% in accuracy compared with the standard model fitting a pure Jersey reference set. Overall, our findings indicate that genomic prediction of Jersey bull fertility is feasible. The use of Gaussian kernels fitting markers with relevant roles and the inclusion of Holstein records in the training set seem to be promising alternatives to the standard whole-genome approach. These results have the potential to help the dairy industry improve US Jersey sire fertility through accurate genome-guided decisions.


Assuntos
Bovinos/genética , Fertilidade/genética , Animais , Indústria de Laticínios , Análise de Dados , Feminino , Genoma , Genótipo , Masculino , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Gravidez
10.
Front Genet ; 9: 532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555508

RESUMO

Structural equation models involving latent variables are useful tools for formulating hypothesized models defined by theoretical variables and causal links between these variables. The objectives of this study were: (1) to identify latent variables underlying carcass and meat quality traits and (2) to perform whole-genome scans for these latent variables in order to identify genomic regions and individual genes with both direct and indirect effects. A total of 726 steers from an Angus-Brahman multibreed population with records for 22 phenotypes were used. A total of 480 animals were genotyped with the GGP Bovine F-250. The single-step genomic best linear unbiased prediction method was used to estimate the amount of genetic variance explained for each latent variable by chromosome regions of 20 adjacent SNP-windows across the genome. Three types of genetic effects were considered: (1) direct effects on a single latent phenotype; (2) direct effects on two latent phenotypes simultaneously; and (3) indirect effects. The final structural model included carcass quality as an independent latent variable and meat quality as a dependent latent variable. Carcass quality was defined by quality grade, fat over the ribeye and marbling, while the meat quality was described by juiciness, tenderness and connective tissue, all of them measured through a taste panel. From 571 associated genomic regions (643 genes), each one explaining at least 0.05% of the additive variance, 159 regions (179 genes) were associated with carcass quality, 106 regions (114 genes) were associated with both carcass and meat quality, 242 regions (266 genes) were associated with meat quality, and 64 regions (84 genes) were associated with carcass quality, having an indirect effect on meat quality. Three biological mechanisms emerged from these findings: postmortem proteolysis of structural proteins and cellular compartmentalization, cellular proliferation and differentiation of adipocytes, and fat deposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...