Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36015000

RESUMO

Arboviruses (an acronym for "arthropod-borne virus"), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/ß/γ R-/-) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus-host interactions.

2.
Viruses ; 12(8)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784948

RESUMO

Mayaro virus (MAYV), a sylvatic arbovirus belonging to the Togaviridae family and Alphavirus genus, is responsible for an increasing number of outbreaks in several countries of Central and South America. Despite Haemagogus janthinomys being identified as the main vector of MAYV, laboratory studies have already demonstrated the competence of Aedes aegypti to transmit MAYV. It has also been demonstrated that the WolbachiawMel strain is able to impair the replication and transmission of MAYV in Ae. aegypti. In Ae. aegypti, the small interfering RNA (siRNA) pathway is an important antiviral mechanism; however, it remains unclear whether siRNA pathway acts against MAYV infection in Ae. aegypti. The main objective of this study was to determine the contribution of the siRNA pathway in the control of MAYV infection. Thus, we silenced the expression of AGO2, an essential component of the siRNA pathway, by injecting dsRNA-targeting AGO2 (dsAGO2). Our results showed that AGO2 is required to control MAYV replication upon oral infection in Wolbachia-free Ae. aegypti. On the other hand, we found that Wolbachia-induced resistance to MAYV in Ae. aegypti is independent of the siRNA pathway. Our study brought new information regarding the mechanism of viral protection, as well as on Wolbachia mediated interference.


Assuntos
Aedes/microbiologia , Aedes/virologia , Alphavirus/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Wolbachia/fisiologia , Aedes/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Feminino , Humanos , Imunidade Inata , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Wolbachia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...