Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 11(3): e0005374, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278244

RESUMO

BACKGROUND: Immunity to the sand fly salivary protein SALO (Salivary Anticomplement of Lutzomyia longipalpis) protected hamsters against Leishmania infantum and L. braziliensis infection and, more recently, a vaccine combination of a genetically modified Leishmania with SALO conferred strong protection against L. donovani infection. Because of the importance of SALO as a potential component of a leishmaniasis vaccine, a plan to produce this recombinant protein for future scale manufacturing as well as knowledge of its structural characteristics are needed to move SALO forward for the clinical path. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant SALO was expressed as a soluble secreted protein using Pichia pastoris, rSALO(P), with yields of 1g/L and >99% purity as assessed by SEC-MALS and SDS-PAGE. Unlike its native counterpart, rSALO(P) does not inhibit the classical pathway of complement; however, antibodies to rSALO(P) inhibit the anti-complement activity of sand fly salivary gland homogenate. Immunization with rSALO(P) produces a delayed type hypersensitivity response in C57BL/6 mice, suggesting rSALO(P) lacked anti-complement activity but retained its immunogenicity. The structure of rSALO(P) was solved by S-SAD at Cu-Kalpha to 1.94 Å and refined to Rfactor 17%. SALO is ~80% helical, has no appreciable structural similarities to any human protein, and has limited structural similarity in the C-terminus to members of insect odorant binding proteins. SALO has three predicted human CD4+ T cell epitopes on surface exposed helices. CONCLUSIONS/SIGNIFICANCE: The results indicate that SALO as expressed and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing. SALO has a novel structure, is not similar to any human proteins, is immunogenic in rodents, and does not have the anti-complement activity observed in the native salivary protein which are all important attributes to move this vaccine candidate forward to the clinical path.


Assuntos
Psychodidae/química , Proteínas Recombinantes/imunologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Expressão Gênica , Camundongos Endogâmicos C57BL , Pichia/genética , Pichia/metabolismo , Conformação Proteica , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas e Peptídeos Salivares/administração & dosagem , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2186-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25084337

RESUMO

Schistosomiasis is a parasitic disease that affects over 200 million people. Vaccine candidates have been identified, including Schistosoma mansoni venom allergen-like proteins (SmVALs) from the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. The first SmVAL structure, SmVAL4, was refined to a resolution limit of 2.16 Å. SmVAL4 has a unique structure that could not be predicted from homologous structures, with longer loops and an unusual C-terminal extension. SmVAL4 has the characteristic α/ß-sandwich and central SCP/TAPS cavity. Furthermore, SmVAL4 has only one of the signature CAP cavity tetrad amino-acid residues and is missing the histidines that coordinate divalent cations such as Zn(2+) in other SCP/TAPS proteins. SmVAL4 has a cavity between α-helices 1 and 4 that was observed to bind lipids in tablysin-15, suggesting the ability to bind lipids. Subsequently, SmVAL4 was shown to bind cholesterol in vitro. Additionally, SmVAL4 was shown to complement the in vivo sterol-export phenotype of yeast mutants lacking their endogenous CAP proteins. Expression of SmVAL4 in yeast cells lacking endogenous CAP function restores the block in sterol export. These studies suggest an evolutionarily conserved lipid-binding function shared by CAP proteins such as SmVAL4 and yeast CAP proteins such as Pry1.


Assuntos
Alérgenos/química , Lipídeos/química , Schistosoma mansoni/química , Peçonhas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Cristalografia por Raios X , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
4.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 7): 1922-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25004969

RESUMO

Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of L- and D-alanine. Since D-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections.


Assuntos
Alanina Racemase/química , Clostridioides difficile/enzimologia , Farmacorresistência Bacteriana Múltipla , Sequência de Aminoácidos , Cromatografia em Gel , Clostridioides difficile/efeitos dos fármacos , Cristalografia por Raios X , Dimerização , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
5.
Hum Vaccin Immunother ; 9(11): 2342-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23899507

RESUMO

A novel recombinant protein vaccine for human schistosomiasis caused by Schistosoma mansoni is under development. The Sm-TSP-2 schistosomiasis vaccine is comprised of a 9 kDa recombinant protein corresponding to the extracellular domain of a unique S. mansoni tetraspanin. Here, we describe the cloning and the expression of the external loop of Sm-TSP-2 recombinant protein secreted by Pichia Pink the process development at 20L scale fermentation, and the two-steps purification, which resulted in a protein recovery yield of 31% and a protein purity of 97%. The developed processes are suitable for the production of purified protein for subsequent formulation and Phase 1 clinical studies.


Assuntos
Antígenos de Helmintos/biossíntese , Antígenos de Helmintos/isolamento & purificação , Proteínas de Helminto/biossíntese , Proteínas de Helminto/isolamento & purificação , Esquistossomose mansoni/prevenção & controle , Tetraspaninas/biossíntese , Tetraspaninas/isolamento & purificação , Vacinas/biossíntese , Vacinas/isolamento & purificação , Animais , Antígenos de Helmintos/genética , Biotecnologia/métodos , Expressão Gênica , Proteínas de Helminto/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Schistosoma mansoni/genética , Esquistossomose mansoni/imunologia , Tecnologia Farmacêutica/métodos , Tetraspaninas/genética , Vacinas/genética
6.
Hum Vaccin Immunother ; 9(11): 2351-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23880663

RESUMO

A candidate vaccine to prevent human schistosomiasis is under development. The vaccine is comprised of a recombinant 9 kDa antigen protein corresponding to the large extracellular domain of a tetraspanin surface antigen protein of Schistosoma mansoni, Sm-TSP-2. Here, we describe the biophysical profile of the purified, recombinant Sm-TSP-2 produced in the yeast PichiaPink, which in preclinical studies in mice was shown to be an effective vaccine against intestinal schistosomiasis. Biophysical techniques including circular dichroism, intrinsic and extrinsic fluorescence and light scattering were employed to generate an empirical phase diagram, a color based map of the physical stability of the vaccine antigen over a wide range of temperatures and pH. From these studies a pH range of 6.0-8.0 was determined to be optimal for maintaining the stability and conformation of the protein at temperatures up to 25 °C. Sorbitol, sucrose and trehalose were selected as excipients that prevented physical degradation during storage. The studies described here provide guidance for maximizing the stability of soluble recombinant Sm-TSP-2 in preparation of its further development as a vaccine.


Assuntos
Antígenos de Helmintos/química , Proteínas de Helminto/química , Esquistossomose mansoni/prevenção & controle , Tetraspaninas/química , Vacinas/química , Vacinas/imunologia , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/isolamento & purificação , Fenômenos Biofísicos , Dicroísmo Circular , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/farmacologia , Fluorometria , Proteínas de Helminto/genética , Proteínas de Helminto/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Pichia/genética , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Esquistossomose mansoni/imunologia , Temperatura , Tetraspaninas/genética , Tetraspaninas/isolamento & purificação , Vacinas/isolamento & purificação
7.
Hum Vaccin Immunother ; 8(6): 765-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22495115

RESUMO

A bivalent recombinant vaccine for human hookworm disease is under development. One of the lead candidate antigens in the vaccine is a glutathione S-transferase cloned from the hookworm Necator americanus (Na-GST-1) which is expressed in the yeast Pichia pastoris. Based on preliminary studies demonstrating that the recombinant protein was not stable in an acetate buffer at pH 6, we undertook an extensive stability analysis of the molecule. To improve and optimize stability we complemented traditional methods employed for macromolecule and vaccine stabilization with biophysical techniques that were incorporated into a systematic process based on an eigenvector approach. Large data sets, obtained from a variety of experimental methods were used to establish a color map ("empirical phase diagram") of the physical stability of the vaccine antigen over a wide range of temperature and pH. The resulting map defined "apparent phase boundaries" that were used to develop high throughput screening assays. These assays were then employed to identify excipients that stabilized the antigen against physical degradation that could otherwise result in losses of physicochemical integrity, immunogenicity, and potency of the vaccine. Based on these evaluations, the recombinant Na-GST-1 antigen was reformulated and ultimately produced under Good Manufacturing Practices and with an acceptable stability profile.


Assuntos
Ancylostomatoidea/imunologia , Infecções por Uncinaria/imunologia , Ancylostomatoidea/patogenicidade , Animais , Antígenos de Helmintos/imunologia , Humanos , Necator americanus/imunologia , Necator americanus/patogenicidade , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...