Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426518

RESUMO

Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes. We study several prototypical aqueous mixed alkali-chloride electrolytes containing an equimolar fraction of Li/Na, Li/K, or Na/K cations confined between neutral and positively or negatively charged parallel graphene sheets. The strong hydration shell of small Li+ vs a larger Na+ or large K+ with weaker or weak hydration shells affects the interplay between the ions's propensity to hydrate or dehydrate under the graphene nanoconfinement and the strength of the ion-graphene interactions mediated by confinement-induced layered water. We perform molecular dynamics simulations of the confined mixed-cation electrolytes using the effectively polarizable force field for electrolyte-graphene systems and focused on a relation between the electrochemical adsorption and structural properties of the water molecules and ions and their diffusion behavior. The simulations show that the one-layer nanoslits have the biggest impact on the ions' adsorption and the water and ions' diffusion. The positively charged one-layer nanoslits only allow for Cl- adsorption and strengthen the intermolecular bonding, which along with the ultrathin confinement substantially reduces the water and Cl- diffusion. In contrast, the negatively charged one-layer nanoslits only allow for adsorption of weakly hydrated Na+ or K+ and substantially break up the non-covalent bond network, which leads to the enhancement of the water and Na+ or K+ diffusion up to or even above the bulk diffusion. In wider nanoslits, cations adsorb closer to the graphene surfaces than Cl-'s with preferential adsorption of a weakly hydrated cation over a strongly hydrated cation. The positive graphene charge has an intuitive effect on the adsorption of weakly hydrated Na+'s or K+'s and Cl-'s and a counterintuitive effect on the adsorption of strongly hydrated Li+'s. On the other hand, the negative surface charge has an intuitive effect on the adsorption of both types of cations and only mild intuitive or counterintuitive effects on the Cl- adsorption. The diffusion of water molecules and ions confined in the wider nanoslits is reduced with respect to the bulk diffusion, more for the positive graphene charge, which strengthened the intermolecular bonding, and less for the negative surface charge, which weakened the non-covalent bond network.

2.
Phys Chem Chem Phys ; 25(32): 21579-21594, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548441

RESUMO

Understanding the microscopic behaviour of aqueous electrolyte solutions in graphene-based ultrathin nanochannels is important in nanofluidic applications such as water purification, fuel cells, and molecular sensing. Under extreme confinement (<2 nm), the properties of water and ions differ drastically from those in the bulk phase. We studied the structural and diffusion behaviour of prototypical aqueous solutions of electrolytes (LiCl, NaCl, and KCl) confined in both neutral and positively-, and negatively-charged graphene nanochannels. We performed molecular dynamics simulations of the solutions in the nanochannels with either one, two- or three-layer water structures using the effectively polarisable force field for graphene. We analysed the structure and intermolecular bond network of the confined solutions along with their relation to the self-diffusivity of water and ions. The simulations show that Na and K cations can more easily rearrange their solvation shells under the graphene nanoconfinement and adsorb on the graphene surfaces or dissolve in the confinement-induced layered water than the Li cation. The negative surface charge together with the presence of ions orient water molecules with hydrogens towards the graphene surfaces, which in turn weakens the intermolecular bond network. The one-layer nanochannels have the biggest effect on the water structure and intermolecular bonding as well as on the adsorption of ions with only co-ions entering these nanochannels. The self-diffusivity of confined water is strongly reduced with respect to the bulk water and decreases with diminishing nanochannel heights except for the negatively-charged one-layer nanochannel. The self-diffusivity of ions also decreases with the reducing the nanochannel heights except for the self-diffusivity of cations in the negatively-charged one-layer nanochannel, evidencing cooperative diffusion of confined water and ions. Due to the significant break-up of the intermolecular bond network in the negatively-charged one-layer nanochannel, self-diffusion coefficients of water and cations exceed those for the two- and three-layer nanochannels and become comparable to the bulk values.

3.
Langmuir ; 33(42): 11126-11137, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28689411

RESUMO

We employ grand canonical Monte Carlo and molecular dynamics simulations to systematically study the adsorption and diffusion of C1 to C4 alkanes in hierarchical ZSM-5 zeolite with micropores (∼1 nm) and mesopores (>2 nm). The zeolite is characterized by a large surface area of active sites on the microporous scale with high permeability and access to the active sites, which arises from the enhanced transport at the mesoporous scale. We model this zeolite as a microporous Na+-exchanged alumino-sillicate zeolite ZSM-5/35 (Si/Al = 35) in which cylindrical mesopores with a diameter of 4 nm have been built by deleting atoms accordingly. We use the TraPPE and Vujic-Lyubartsev force fields along with the Lorentz-Berthelot combining rules to describe adsorbate-adsorbate and adsorbate-adsorbent interactions. The performance of the force fields is assessed by comparing against experimental single-component adsorption isotherms of methane and ethane in microporous ZSM-5/35, which we measured as part of this work. We compare the adsorption isotherms and diffusivities of the adsorbed alkanes in the dual-porosity zeolite with those in microporous ZSM-5/35 and discern the specific behavior at each porosity scale on the overall adsorption, self-diffusion, and transport behavior in zeolites with dual micro/mesoporosities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...