Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(50): 19926-31, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19066218

RESUMO

Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha has been shown to play critical roles in regulating mitochondria biogenesis, respiration, and muscle oxidative phenotype. Furthermore, reductions in the expression of PGC-1alpha in muscle have been implicated in the pathogenesis of type 2 diabetes. To determine the effect of increased muscle-specific PGC-1alpha expression on muscle mitochondrial function and glucose and lipid metabolism in vivo, we examined body composition, energy balance, and liver and muscle insulin sensitivity by hyperinsulinemic-euglycemic clamp studies and muscle energetics by using (31)P magnetic resonance spectroscopy in transgenic mice. Increased expression of PGC-1alpha in muscle resulted in a 2.4-fold increase in mitochondrial density, which was associated with an approximately 60% increase in the unidirectional rate of ATP synthesis. Surprisingly, there was no effect of increased muscle PGC-1alpha expression on whole-body energy expenditure, and PGC-1alpha transgenic mice were more prone to fat-induced insulin resistance because of decreased insulin-stimulated muscle glucose uptake. The reduced insulin-stimulated muscle glucose uptake could most likely be attributed to a relative increase in fatty acid delivery/triglyceride reesterfication, as reflected by increased expression of CD36, acyl-CoA:diacylglycerol acyltransferase1, and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase, that may have exceeded mitochondrial fatty acid oxidation, resulting in increased intracellular lipid accumulation and an increase in the membrane to cytosol diacylglycerol content. This, in turn, caused activation of PKC, decreased insulin signaling at the level of insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, and skeletal muscle insulin resistance.


Assuntos
Glucose/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Transativadores/biossíntese , Animais , Dieta , Metabolismo Energético , Gorduras/administração & dosagem , Gorduras/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Insulina/farmacologia , Resistência à Insulina , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/ultraestrutura , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição
2.
Diabetes ; 57(10): 2644-51, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18633112

RESUMO

OBJECTIVE: Insulin resistance in skeletal muscle plays a critical role in the pathogenesis of type 2 diabetes, yet the cellular mechanisms responsible for insulin resistance are poorly understood. In this study, we examine the role of serine phosphorylation of insulin receptor substrate (IRS)-1 in mediating fat-induced insulin resistance in skeletal muscle in vivo. RESEARCH DESIGN AND METHODS: To directly assess the role of serine phosphorylation in mediating fat-induced insulin resistance in skeletal muscle, we generated muscle-specific IRS-1 Ser(302), Ser(307), and Ser(612) mutated to alanine (Tg IRS-1 Ser-->Ala) and IRS-1 wild-type (Tg IRS-1 WT) transgenic mice and examined insulin signaling and insulin action in skeletal muscle in vivo. RESULTS: Tg IRS-1 Ser-->Ala mice were protected from fat-induced insulin resistance, as reflected by lower plasma glucose concentrations during a glucose tolerance test and increased insulin-stimulated muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. In contrast, Tg IRS-1 WT mice exhibited no improvement in glucose tolerance after high-fat feeding. Furthermore, Tg IRS-1 Ser-->Ala mice displayed a significant increase in insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity and Akt phosphorylation in skeletal muscle in vivo compared with WT control littermates. CONCLUSIONS: These data demonstrate that serine phosphorylation of IRS-1 plays an important role in mediating fat-induced insulin resistance in skeletal muscle in vivo.


Assuntos
Substituição de Aminoácidos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Alanina/genética , Alanina/metabolismo , Animais , Western Blotting , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Imunoprecipitação , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Serina/genética , Serina/metabolismo , Triglicerídeos/metabolismo
3.
Proc Natl Acad Sci U S A ; 104(42): 16480-5, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17923673

RESUMO

Acetyl-CoA carboxylase 2 (ACC)2 is a key regulator of mitochondrial fat oxidation. To examine the impact of ACC2 deletion on whole-body energy metabolism, we measured changes in substrate oxidation and total energy expenditure in Acc2(-/-) and WT control mice fed either regular or high-fat diets. To determine insulin action in vivo, we also measured whole-body insulin-stimulated liver and muscle glucose metabolism during a hyperinsulinemic-euglycemic clamp in Acc2(-/-) and WT control mice fed a high-fat diet. Contrary to previous studies that have suggested that increased fat oxidation might result in lower glucose oxidation, both fat and carbohydrate oxidation were simultaneously increased in Acc2(-/-) mice. This increase in both fat and carbohydrate oxidation resulted in an increase in total energy expenditure, reductions in fat and lean body mass and prevention from diet-induced obesity. Furthermore, Acc2(-/-) mice were protected from fat-induced peripheral and hepatic insulin resistance. These improvements in insulin-stimulated glucose metabolism were associated with reduced diacylglycerol content in muscle and liver, decreased PKC activity in muscle and PKCepsilon activity in liver, and increased insulin-stimulated Akt2 activity in these tissues. Taken together with previous work demonstrating that Acc2(-/-) mice have a normal lifespan, these data suggest that Acc2 inhibition is a viable therapeutic option for the treatment of obesity and type 2 diabetes.


Assuntos
Acetil-CoA Carboxilase/genética , Tecido Adiposo/enzimologia , Resistência à Insulina/genética , Insulina/farmacologia , Animais , Citocinas/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Isoenzimas/metabolismo , Fígado/enzimologia , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Oxirredução , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-theta
4.
J Clin Invest ; 117(7): 1995-2003, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17571165

RESUMO

Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCtheta in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1- (IRS-1-) and IRS-2-associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCtheta activity in whole-body fat-matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus.


Assuntos
Regulação da Expressão Gênica , Resistência à Insulina , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP , Envelhecimento/fisiologia , Animais , Ativação Enzimática , Hormônios/sangue , Humanos , Insulina/sangue , Canais Iônicos/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Complexos Multienzimáticos/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C-theta , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Desacopladora 3 , Aumento de Peso
5.
Cell Metab ; 5(2): 151-6, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17276357

RESUMO

Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.


Assuntos
Envelhecimento , Mitocôndrias/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Guanidinas/administração & dosagem , Guanidinas/farmacologia , Masculino , Mitocôndrias/efeitos dos fármacos , Condicionamento Físico Animal , Propionatos/administração & dosagem , Propionatos/farmacologia , Ratos , Ratos Endogâmicos F344 , Ribonucleotídeos/farmacologia
6.
J Physiol ; 574(Pt 1): 33-9, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16709637

RESUMO

While it has been known for more than 75 years that physical activity is associated with increased mitochondrial content in muscle, the molecular mechanism for this adaptive process has only recently been elucidated. This brief review examines existing studies that have identified AMPK-activated protein kinase (AMPK) and several other key regulators of mitochondrial biogenesis, including peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -1beta, calcium/calmodulin-dependent protein kinase IV, and nitric oxide. In addition, the potential role of mitochondrial dysfunction in the pathogenesis of insulin resistance associated with ageing and type 2 diabetes mellitus is also discussed.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Mitocôndrias Musculares/fisiologia , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/fisiologia , Resistência Física/fisiologia , Esforço Físico/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Humanos , Contração Muscular/fisiologia
7.
Cell ; 119(1): 121-35, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15454086

RESUMO

PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético/genética , Gluconeogênese/genética , Hipercinese/genética , Mitocôndrias/metabolismo , Transativadores/genética , Adaptação Fisiológica/genética , Animais , Regulação do Apetite/genética , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/metabolismo , Doenças dos Gânglios da Base/patologia , Encéfalo/fisiopatologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Hepatócitos/metabolismo , Homeostase/genética , Hipercinese/patologia , Hipercinese/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/deficiência , Fatores de Transcrição , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...