Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
NPJ Breast Cancer ; 5: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428676

RESUMO

Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.

3.
Mol Genet Genomics ; 288(10): 495-502, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861023

RESUMO

Chromosome dimers, which form during the bacterial life cycle, represent a problem that must be solved by the bacterial cell machinery so that chromosome segregation can occur effectively. The Xer/dif site-specific recombination system, utilized by most bacteria, resolves chromosome dimers into monomers using two tyrosine recombinases, XerC and XerD, to perform the recombination reaction at the dif site which consists of 28-30 bp. However, single Xer recombinase systems have been recently discovered in several bacterial species. In Streptococci and Lactococci a single recombinase, XerS, is capable of completing the monomerisation reaction by acting at an atypical dif site called dif SL (31 bp). It was recently shown that a subgroup of ε-proteobacteria including Campylobacter spp. and Helicobacter spp. had a phylogenetically distinct Xer/dif recombination system with only one recombinase (XerH) and an atypical dif motif (difH). In order to biochemically characterize this system in greater detail, Campylobacter jejuni XerH was purified and its DNA-binding activity was characterized. The protein showed specific binding to the complete difH site and to both halves separately. It was also shown to form covalent complexes with difH suicide substrates. In addition, XerH was able to catalyse recombination between two difH sites located on a plasmid in Escherichia coli in vivo. This indicates that this XerH protein performs a similar function as the related XerS protein, but shows significantly different binding characteristics.


Assuntos
Campylobacter jejuni/enzimologia , Cromossomos Bacterianos/química , DNA Nucleotidiltransferases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Integrases/metabolismo , Recombinação Genética/fisiologia , Sequência de Aminoácidos , Catálise , Primers do DNA/genética , Dimerização , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...