Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102220, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948331

RESUMO

Infantile-onset Pompe disease (IOPD) results from pathogenic variants in the GAA gene, which encodes acid α-glucosidase. The correction of pathogenic variants through genome editing may be a valuable one-time therapy for PD and improve upon the current standard of care. We performed adenine base editing in human dermal fibroblasts harboring three transition nonsense variants, c.2227C>T (p.Q743∗; IOPD-1), c.2560C>T (p.R854∗; IOPD-2), and c.2608C>T (p.R870∗; IOPD-3). Up to 96% adenine deamination of target variants was observed, with minimal editing across >50 off-target sites. Post-base editing, expressed GAA protein was up to 0.66-fold normal (unaffected fibroblasts), an improvement over affected fibroblasts wherein GAA was undetectable. GAA enzyme activity was between 81.91 ± 13.51 and 129.98 ± 9.33 units/mg protein at 28 days post-transfection, which falls within the normal range (50-200 units/mg protein). LAMP2 protein was significantly decreased in the most robustly edited cell line, IOPD-3, indicating reduced lysosomal burden. Taken together, the findings reported herein demonstrate that base editing results in efficacious adenine deamination, restoration of GAA expression and activity, and reduction in lysosomal burden in the most robustly edited cells. Future work will assess base editing outcomes and the impact on Pompe pathology in two mouse models, Gaa c.2227C>T and Gaa c.2560C>T.

2.
Mol Ther Nucleic Acids ; 34: 102022, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37727271

RESUMO

Free sialic acid storage disorders (FSASDs) result from pathogenic variations in the SLC17A5 gene, which encodes the lysosomal transmembrane protein sialin. Loss or deficiency of sialin impairs FSA transport out of the lysosome, leading to cellular dysfunction and neurological impairment, with the most severe form of FSASD resulting in death during early childhood. There are currently no therapies for FSASDs. Here, we evaluated the efficacy of CRISPR-Cas9-mediated homology directed repair (HDR) and adenine base editing (ABE) targeting the founder variant, SLC17A5 c.115C>T (p.Arg39Cys) in human dermal fibroblasts. We observed minimal correction of the pathogenic variant in HDR samples with a high frequency of undesired insertions/deletions (indels) and significant levels of correction for ABE-treated samples with no detectable indels, supporting previous work showing that CRISPR-Cas9-mediated ABE outperforms HDR. Furthermore, ABE treatment of either homozygous or compound heterozygous SLC17A5 c.115C>T human dermal fibroblasts demonstrated significant FSA reduction, supporting amelioration of disease pathology. Translation of this ABE strategy to mouse embryonic fibroblasts harboring the Slc17a5 c.115C>T variant in homozygosity recapitulated these results. Our study demonstrates the feasibility of base editing as a therapeutic approach for the FSASD variant SLC17A5 c.115C>T and highlights the usefulness of base editing in monogenic diseases where transmembrane protein function is impaired.

3.
Stem Cell Res ; 69: 103117, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37167752

RESUMO

Pompe disease is an autosomal recessive lysosomal storage disease caused by pathogenic variants in GAA, which encodes an enzyme integral to glycogen catabolism, acid α-glucosidase. Disease-relevant cell lines are necessary to evaluate the efficacy of genotype-specific therapies. Dermal fibroblasts from two patients presenting clinically with Pompe disease were reprogrammed to induced pluripotent stem cells using the Sendai viral method. One patient is compound heterozygous for the c.258dupC (p.N87QfsX9) frameshift mutation and the c.2227C>T (p.Q743X) nonsense mutation. The other patient harbors the c.-32-13T>G splice variant and the c.1826dupA (p.Y609X) frameshift mutation in compound heterozygosity.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , alfa-Glucosidases/genética , Genótipo
4.
Sci Rep ; 12(1): 21576, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517654

RESUMO

Pompe disease, an autosomal recessive disorder caused by deficient lysosomal acid α-glucosidase (GAA), is characterized by accumulation of intra-lysosomal glycogen in skeletal and oftentimes cardiac muscle. The c.1935C>A (p.Asp645Glu) variant, the most frequent GAA pathogenic mutation in people of Southern Han Chinese ancestry, causes infantile-onset Pompe disease (IOPD), presenting neonatally with severe hypertrophic cardiomyopathy, profound muscle hypotonia, respiratory failure, and infantile mortality. We applied CRISPR-Cas9 homology-directed repair (HDR) using a novel dual sgRNA approach flanking the target site to generate a Gaaem1935C>A knock-in mouse model and a myoblast cell line carrying the Gaa c.1935C>A mutation. Herein we describe the molecular, biochemical, histological, physiological, and behavioral characterization of 3-month-old homozygous Gaaem1935C>A mice. Homozygous Gaaem1935C>A knock-in mice exhibited normal Gaa mRNA expression levels relative to wild-type mice, had near-abolished GAA enzymatic activity, markedly increased tissue glycogen storage, and concomitantly impaired autophagy. Three-month-old mice demonstrated skeletal muscle weakness and hypertrophic cardiomyopathy but no premature mortality. The Gaaem1935C>A knock-in mouse model recapitulates multiple salient aspects of human IOPD caused by the GAA c.1935C>A pathogenic variant. It is an ideal model to assess innovative therapies to treat IOPD, including personalized therapeutic strategies that correct pathogenic variants, restore GAA activity and produce functional phenotypes.


Assuntos
Cardiomiopatia Hipertrófica , Doença de Depósito de Glicogênio Tipo II , alfa-Glucosidases , Animais , Humanos , Lactente , Camundongos , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Modelos Animais de Doenças , Glucana 1,4-alfa-Glucosidase , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/metabolismo , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo
5.
Front Mol Biosci ; 9: 991728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452451

RESUMO

The Central Dogma highlights the mutualistic functions of protein and nucleic acid biopolymers, and this synergy appears prominently in the membraneless organelles widely distributed throughout prokaryotic and eukaryotic organisms alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA with proteins, are a prime example of these membranelles organelles and underly multiple essential cellular functions. Inspired by the highly dynamic character of these organelles and the recent studies that ATP both inhibits and templates phase separation of the fused in sarcoma (FUS) protein implicated in several neurodegenerative diseases, we explored the RNA templated ordering of a single motif of the Aß peptide of Alzheimer's disease. We now know that this strong cross-ß propensity motif alone assembles through a liquid-like coacervate phase that can be externally templated to form distinct supramolecular assemblies. Now we provide evidence that structured phosphates, ranging from complex structures like double stranded and quadraplex DNA to simple trimetaphosphate, differentially impact the liquid to solid phase transition necessary for paracrystalline assembly. The results from this simple model illustrate the potential of ordered environmental templates in the transition to potentially irreversible pathogenic assemblies and provides insight into the ordering dynamics necessary for creating functional synthetic polymer co-assemblies.

6.
Appl Clin Genet ; 14: 209-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859490

RESUMO

The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme ß-galactosidase (ß-gal). Mutation of the GLB1 gene, which codes for ß-gal, prevents cleavage of the terminal ß-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.

7.
Angew Chem Int Ed Engl ; 59(1): 358-363, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617300

RESUMO

Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion-induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co-assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co-assembly. The structure provides a model for nucleic acid/amyloid co-assembly as well as insight into the energetic determinants involved in templating amyloid assembly.


Assuntos
Amiloide/química , Ácidos Nucleicos Peptídicos/química , Humanos , Modelos Moleculares , Eletricidade Estática
8.
Philos Trans A Math Phys Eng Sci ; 375(2109)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133453

RESUMO

The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond.This article is part of the themed issue 'Reconceptualizing the origins of life'.


Assuntos
Biologia Computacional , Peptídeos/química , Peptídeos/metabolismo , RNA/química , RNA/metabolismo , Modelos Moleculares , Conformação Molecular , Origem da Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...