Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 100(4): 100981, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647722

RESUMO

The study investigated the benefit of a Bacillus subtilis probiotic (Bs 29,784) in necrotic enteritis (NE)-challenged broilers. Four treatments were performed with 312 male day-old Ross 308 reared in floor pens from day 0 to day 35: 2 groups fed control diet without or with NE challenge (CtrlNC and CtrlNE); 2 groups fed probiotic and antibiotic supplements in the control diet with NE challenge (ProNE and AntNE). Necrotic enteritis challenge procedures commenced with inoculation of Eimeria spp 1 mL/bird per os at day 9 and Clostridium perfringens EHE-NE18 (approximately 108 cfu/mL) 1 mL/bird per os at day 14 and day 15. Performance parameters were measured on day 16 and day 35. Lesion, cecal microbiota, and jejunal gene expression were analyzed on day 16. Necrotic enteritis challenge significantly suppressed the performance parameters compared with CtrlNC: 27% weight gain reduction, 11 points feed conversion ratio (FCR) increase at day 16, and 12% weight gain reduction, 5-point FCR increase at day 35. By day 35, ProNE and AntNE treatments enabled significantly higher weight gain (4 and 9%, respectively) than CtrlNE. Compared with CtlrNE and contrary to AntNE, ProNE treatment exhibited upregulation of genes coding for tight junctions proteins (CLDN1, JAM2, TJP1), cytokines (IL12, interferon gamma, TGFß), and Toll-like receptors (TLR5, TLR21) suggesting enhanced immunity and intestinal integrity. 16S NGS analysis of cecal microbiota at day 16 showed a decreased alpha diversity in challenged groups. Principal component analysis of operational taxonomic unit (OTU) abundance revealed that ProNE and AntNE grouped closely while both distantly from CtrlNC and CtrlNE, which were separately grouped, indicating the similar effects of ProNE and AntNE on the OTU diversity that were however different from both CtrlNC and CtrlNE. Microbiota analysis revealed an increase of genera Faecalibacterium, Oscillospira, and Butyricicoccus; and a decrease of genera Ruminococcus, Lactobacillus, and Bacteroides; and an increase of the Firmicutes-to-Bacteroidetes ratio in ProNE and AntNE groups compared with the CtlrNE group. It is concluded that Bs 29,784 may enable improved health of broiler chickens under NE conditions thus performance implications.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Ração Animal/análise , Animais , Bacillus subtilis , Galinhas , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Clostridium perfringens , Enterite/prevenção & controle , Enterite/veterinária , Nível de Saúde , Masculino , Doenças das Aves Domésticas/prevenção & controle , Aumento de Peso
2.
Poult Sci ; 98(6): 2548-2554, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668816

RESUMO

The study reports the effects of Bacillus subtilis 29784 on broiler performance. A total of 1,600 one-day-old Cobb 500 male broiler chicks received either a control diet or the same diet to which B. subtilis 29784 spores were added (1E8 CFU/kg of feed). The birds were slaughtered at 42 D of age. Ileal and cecal tissues and content were collected for histomorphological analysis and 16S rRNA gene sequencing, respectively. The inclusion of B. subtilis 29784 led to an increase of final body weight gain of broilers (+5.7%; P < 0.0001) and an improvement in feed conversion ratio (-5.4%; P < 0.0001). Higher feed efficiency in the Bacillus-fed group was correlated with a significant increase in intestinal microvilli length (+18% in ileum and +17% in cecum; P < 0.001). Among the differences revealed by 16S rRNA analysis, Ruminococcus, Lachnoclostridium, and Anaerostipes were found in higher relative abundance in Bacillus-treated birds at the cecal level. These bacterial genera include species that produce butyrate, the main source of energy for enterocytes and known to be an immune modulator. There was also a slight increase in the Butyrivibrio genus in the cecum, which is known to be an important player in the production of conjugated linoleic acid, also considered an anti-inflammatory compound. In conclusion, dietary supplementation of B. subtilis 29784 significantly improved the growth performance of broilers, likely through beneficial effects on microbiota and host.


Assuntos
Ração Animal/análise , Galinhas/fisiologia , Microbioma Gastrointestinal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bacillus subtilis , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Butiratos/metabolismo , Galinhas/microbiologia , Dieta/veterinária , Intestinos/anatomia & histologia , Masculino , RNA Ribossômico 16S
3.
Poult Sci ; 97(2): 412-424, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29140465

RESUMO

Carbohydrate-degrading multi-enzyme preparations (MEP) are used to improve broiler performances. Their mode of action is complex and not fully understood. In this study, we compared the effect of water-soluble fractions isolated at the pilot scale from wheat grain incubated with (WE) and without (WC) MEP. The fractions were incorporated in a wheat-based diet (0.1% w/w) to feed Ross PM3 broilers and compared with a non-supplemented control group (NC). The body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) until d 14 were determined. At d 14, ileal and cecal contents and tissue samples were collected from euthanized animals. The intestinal contents were used to measure the short-chain fatty acids (SCFA) concentration using gas chromatography and to determine the abundance and composition of microbiota using 16S sequencing. Villi length of ileal samples was measured, while L-cell and T-cell densities were determined using immuno-histochemistry. The MEP treatment increased the amount of water-soluble arabinoxylans (AX) and reduced their molecular weight while retaining their polymer behavior. The WE fraction significantly (P < 0.05) increased FI by 13.8% and BWG by 14.7% during the first wk post hatch when compared to NC. No significant effect on FCR was recorded during the trial. The WE increased the abundance of Enterococcus durans and Candidatus arthromitus in the ileum and of bacteria within the Lachnospiraceae and Ruminococcaceae families, containing abundant butyrate-producing bacteria, in the ceca. It also increased the concentration of SCFA in the ceca, decreased the T-lymphocyte infiltration in the intestinal mucosa, and increased the glucagon-like-peptide-2 (GLP-2)-producing L-cell density in the ileal epithelium compared with WC and NC. No significant effects were observed on villi length. These results showed that AX present in the WE fraction altered the microbiota composition towards butyrate producers in the ceca. Butyrate may be responsible for the reduction of inflammation, as suggested by the decrease in T-lymphocyte infiltration, which may explain the higher feed intake leading to improved animal growth.


Assuntos
Galinhas/fisiologia , Prebióticos/administração & dosagem , Triticum/química , Xilanos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Grão Comestível/química , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Masculino , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Xilanos/administração & dosagem
4.
Poult Sci ; 96(7): 2274-2280, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379544

RESUMO

The study reports the effects on broiler performance of a newly isolated Bacillus subtilis strain, which is phylogenetically not closely related to already well-described strains of B. subtilis. In the first experiment, birds were reared in battery cages and exposed to C. perfringens. An increase in growth performance was observed with the strain when compared to the challenged animals. Three additional growth trials were conducted to 35 d of age, in different rearing conditions (genetic breeds, corn-soybean meal-based diet with or without animal proteins, in presence or absence of phytase, on fresh or used litter) to investigate the efficacy and the specificity of this new B. subtilis strain on the improvement of BWG and FCR of broilers in comparison with a B. subtilis-based DFM already used in the field. Whatever the rearing conditions tested, the new B. subtilis strain led to an average 3.2% improvement in feed conversion ratio or bodyweight. Comparatively, the commercial Bacillus strain significantly improved broiler performance in only one trial out of 3 with an average improvement reaching 2%. All these results indicate that this new B. subtilis strain consistently improves broiler performances.


Assuntos
Bacillus subtilis/química , Galinhas/fisiologia , Clostridium perfringens/fisiologia , Dieta/veterinária , Probióticos/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bacillus subtilis/classificação , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Masculino , Probióticos/administração & dosagem , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...