Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ESC Heart Fail ; 11(3): 1525-1539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38149324

RESUMO

AIMS: The conditions of hypoxia are suggested to induce permanent atrial fibrillation (AF). The regulation of COX4I2 and COX4I1 depends on oxygen availability in tissues. A role of COX4I2 in the myocardium of AF patients is supposed for pathogenesis of AF and subsequent alterations in the electron transfer chain (ETC) under hypoxia. METHODS AND RESULTS: In vitro, influence of hypoxia on HeLa 53 cells was studied and elevated parts of COX 4I2 were confirmed. Myocardial biopsies were taken ex vivo from the patients' Right Atria with SR (n = 31) and AF (n = 11), respectively. RT- PCR for mRNA expresson, mitochondrial respiration by polarography and the protein content of cytochrome c oxidase (CytOx) subunit 4I1 and CytOx subunit 4I2 by ELISA were studied. Clinical data were correlated to the findings of gene expressions in parallel. Patients with permanent AF had a change in isoform 4I2/4I1 expression along with a decrease of isoform COX 4I1 expression. The 4I2/4I1 ratio of mRNA expression was increased from 0.630 to 1.058 in comparison. However, the protein content of CytOx subunit 4 was much lower in the AF group, whereas the respiration/units enzyme activity in both groups remained the same. CONCLUSIONS: This study describes a possible molecular correlate for the development of AF. Due to the known functional significance of COX 4I2, mitochondrial dysfunction can be assumed as a part of the pathogenesis of AF.


Assuntos
Fibrilação Atrial , Complexo IV da Cadeia de Transporte de Elétrons , RNA Mensageiro , Humanos , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Masculino , Feminino , RNA Mensageiro/genética , Pessoa de Meia-Idade , Idoso , Células HeLa , Ensaio de Imunoadsorção Enzimática
2.
Mitochondrion ; 49: 149-155, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419492

RESUMO

Almost all energy consumed by higher organisms, either in the form of ATP or heat, is produced in mitochondria by respiration and oxidative phosphorylation through five protein complexes in the inner membrane. High-resolution x-ray analysis of crystallized cytochrome c oxidase (CytOx), the final oxygen-accepting complex of the respiratory chain, isolated by using cholate as detergent, revealed a dimeric structure with 13 subunits in each monomer. In contrast, CytOx isolated with non-ionic detergents appeared to be monomeric. Our data indicate in vivo a continuous transition between CytOx monomers and dimers via reversible phosphorylation. Increased intracellular calcium, as a consequence of stress, dephosphorylates and monomerises CytOx, whereas cAMP rephosphorylates and dimerises it. Only dimeric CytOx exhibits an "allosteric ATP-inhibition" which inhibits respiration at high cellular ATP/ADP-ratios and could prevent oxygen radical formation and the generation of diseases.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas Mitocondriais/química , Consumo de Oxigênio , Multimerização Proteica , Regulação Alostérica , Animais , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Ratos , Ratos Wistar
3.
J Pharmacol Exp Ther ; 370(2): 308-317, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31160469

RESUMO

Protamine sulfate (PS) is widely used in heart surgery as an antidote for heparin, albeit its pharmacological effects are not fully understood and applications are often accompanied by unwanted side effects. Here we show the effect of PS on mitochondrial bioenergetics profile resulting in mitochondrial reactive oxygen species (ROS) production. Polarographic measurements were performed in parallel to membrane potential and ROS measurements by FACS analyzer using tetramethylrhodamine ethyl ester and MitoSOX fluorescent dyes, respectively. PS inhibited intact rat heart mitochondrial respiration (stimulated by ADP) to 76% (P < 0.001) from the baseline of 51.6 ± 6.9 to 12.4 ± 2.3 nmol O2⋅min-1⋅ml-1 The same effect was found when respiration was inhibited by antimycin A (101.0 ± 8.9 vs. 38.0 ± 9.9 nmol O2 ⋅min-1⋅ml-1, P < 0.001) and later stimulated by substrates of cytochrome oxidase (CytOx) i.e., ascorbate and tetramethyl phenylene diamine, suggesting that PS exerted its effect through inhibition of CytOx activity. Furthermore, the inhibition of mitochondrial respiration by PS was concentration dependent and accompanied by hyperpolarization of the mitochondrial membrane potential (Δψ m), i.e., 18% increase at 50 µg/ml and an additional 3.3% increase at 250 µg/ml PS compared with control. This effect was associated with a strong consequent increase in the production of ROS, i.e., 85% and 88.6% compared with control respectively. We propose that this excessive increase in ROS concentrations results in mitochondrial dysfunction and thus might relate to the "protamine reaction," contributing to the development of various cardiovascular adverse effects.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Protaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miocárdio/citologia , Miocárdio/metabolismo , Ratos , Ratos Wistar
4.
J Therm Biol ; 80: 106-112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30784473

RESUMO

Induction of Heat Shock Proteins results in cytoprotection. Beneficial effect results from transcription and translational cellular components' involvement that defends metabolism and thus induce ischemic protection of the tissue. Mitochondrial respiration is also involved in stress- induced conditions. It is not a uniform process. Cytochrome c Oxidase (CytOx) representing complex IV of the Electron Transfer Chain (ETC) has a regulatory role for mitochondrial respiratory activity, which is tested in our study after hsp induction. Moreover, protein translation for mitochondrial components was probed by the detection of MT-CO1 for Subunit 1 of CytOx neosynthesis. Wistar rats were subjected to whole-body hyperthermia at 42.0-42.5 °C for 15 min followed by a normothermic recovery period. Heat shock response was monitored time dependent from LV biopsies of all control and heat treated animals with PCR-analysis for hsp 32, 60, 70.1, 70.2, 90 and MT-CO1 expression at 15, 30, 45, 60, 120 and 360 min recovery (n = 5 in each group), respectively. Enzymatic activity of CytOx were evaluated polarographically. High energy phosphates were detected by chromatographic analysis. The mRNA expression of MT-CO1 peaked at 60 min and was accompanied by hsp 32 (r = 0.457; p = 0.037) and hsp 70.2 (r = 0.615; p = 0.003) upregulation. With hsp induction, mitochondrial respiration was increased initially. Enzymatic activity reconciled from active into relaxed status wherein CytOx activity was completely inhibited by ATP. Myocardial ATP content increased from stress induced point i.e. < 1 µmol g-1 protein w/w to finally 1.5 ±â€¯0.53 µmol g-1 protein w/w at 120 min recovery interval. Hyperthermic, myocardial hsp- induction goes along with increased CytOx activity representing an increased "active" mitochondrial respiration. In parallel, de -novo holoenzyme assembly of CytOx begins as shown by MT-CO1 upregulation at 60 min recovery time crossing with a final return to the physiological "relaxed" state and ATP -inhibited respiration.


Assuntos
Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Hipertermia Induzida , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar
5.
J Cardiothorac Surg ; 13(1): 95, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223867

RESUMO

BACKGROUND: Treatment of heart failure remains one of the most challenging task for intensive care medicine, cardiology and cardiac surgery. New options and better indicators are always required. Understanding the basic mechanisms underlying heart failure promote the development of adjusted therapy e.g. assist devices and monitoring of recovery. If cardiac failure is related to compromised cellular respiration of the heart, remains unclear. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity representing the rate limiting step for the mitochondrial respiratory chain. The enzymatic activity as well as mRNA expression of enzyme's mitochondrial encoded catalytic subunit 2, nuclear encoded regulatory subunit 4 and protein contents were studied in biopsies of cardiac patients suffering from myocardial insufficiency and dilated cardiomyopathy (DCM). METHODS: Fifty-four patients were enrolled in the study and underwent coronary angiography. Thirty male patients (mean age: 45 +/- 15 yrs.) had a reduced ejection fraction (EF) 35 ± 12% below 45% and a left ventricular end diastolic diameter (LVEDD) of 71 ± 10 mm bigger than 56 mm. They were diagnosed as having idiopathic dilated cardiomyopathy (DCM) without coronary heart disease and NYHA-class 3 and 4. Additionally, 24 male patients (mean age: 52 +/- 11 yrs.) after exclusion of secondary cardiomyopathies, coronary artery or valve disease, served as control (EF: 68 ± 7, LVEDD: 51 ± 7 mm). Total RNA was extracted from two biopsies of each person. Real-time PCR analysis was performed with specific primers followed by a melt curve analysis. Corresponding protein expression in the tissue was studied with immune-histochemistry while enzymatic activity was evaluated by spectroscopy. RESULTS: Gene and protein expression analysis of patients showed a significant decrease of subunit 4 (1.1 vs. 0.6, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) but no differences in subunit 2. Correlations were found between reduced subunit 2 expression, low EF (r = 0.766, p < 0.00045) and increased LVEDD (r = 0.492, p < 0.0068). In case of DCM less subunit 4 expression and reduced shortening fraction (r = 0.524, p < 0.017) was found, but enzymatic activity was higher (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001) although myocardial oxygen consumption continued to the same extent. CONCLUSION: In case of myocardial insufficiency and DCM, decreased expression of COX 4 results in an impaired CytOx activity. Higher enzymatic activity but equal oxygen consumption contribute to the pathophysiology of the myocardial insufficiency and appears as an indicator of oxidative stress. This kind of dysregulation should be in the focus for the development of diagnostic and therapy procedures.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Adulto , Cardiomiopatia Dilatada/complicações , Coração/fisiopatologia , Insuficiência Cardíaca/etiologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
6.
Biol Chem ; 398(7): 737-750, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27926476

RESUMO

In the past, divergent results have been reported based on different methods and conditions used for enzymatic activity measurements of cytochrome c oxidase (CytOx). Here, we analyze in detail and show comparable and reproducible polarographic activity measurements of ATP-dependent inhibition of CytOx kinetics in intact and non-intact rat heart mitochondria and mitoplasts. We found that this mechanism is always present in isolated rat heart mitochondria and mitoplasts; however, it is measurable only at high ATP/ADP ratios using optimal protein concentrations. In the kinetics assay, measurement of this mechanism is independent of presence or absence of Tween-20 and the composition of measuring buffer. Furthermore, the effect of atractyloside on intact rat heart mitochondria confirms that (i) ATP inhibition occurs under uncoupled conditions [in the presence of carbonly cyanide m-chlorophenyl hydrazone (CCCP)] when the classical respiratory control is absent and (ii) high ATP/ADP ratios in the matrix as well as in the cytosolic space are required for full ATP inhibition of CytOx. Additionally, ATP inhibition measured in intact mitochondria extends in the presence of oligomycin, thus indicating further that the problem to measure the inhibitory effect of ATP on CytOx is apparently due to the lack of very high ATP/ADP ratios in isolated mitochondria.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Animais , Cinética , Mitocôndrias Cardíacas/metabolismo , Ratos
7.
Bioessays ; 38(6): 556-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27171124

RESUMO

Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP-dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/biossíntese , Regulação Alostérica , Animais , Transporte de Elétrons , Humanos , Cinética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo
8.
Shock ; 40(5): 407-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23867523

RESUMO

PURPOSE: This study addresses the effect of short myocardial ischemia on inhibitory effect of ATP for mitochondrial cytochrome c oxidase (CytOx) activity in myocardium and subsequent hemodynamic alterations. The activity of CytOx is inhibited by ATP (primary substrate control). This additional mechanism was proposed to be switched off at higher mitochondrial membrane potential values in case of stress. The ATP-dependent allosteric enzyme inhibition (second respiratory control) is suggested to reduce the formation of reactive oxygen species and thus is pivotal for cytoprotection. This report addresses the possible involvement of this mechanism in case of myocardial preconditioning. METHODS: Rat hearts were perfused in a Langendorff system (n = 5 each group). The first two groups underwent short recurrent ischemic periods (three times 5 min) and subsequent high or low reperfusion for 40 min. Besides four control groups, hearts were exposed to an ischemia of 15 min and high flow reperfused for 30 min, in addition. Hemodynamic data were evaluated in parallel. Mitochondria were separated for the polarographic respiration measurements in the presence of ADP or ATP, respectively. Phosphorylation patterns of the CytOx subunits were studied by immunoblotting with P-Ser, P-Thr, and P-Tyr antibodies. RESULTS: Short recurrent episodes of ischemia result in an ATP-dependent inhibition of CytOx. Electrophoretic analysis and blotting techniques reveal different phosphorylation patterns of the enzyme. Frequent short-lasting ischemic impacts and subsequent increased coronary flow seem to be essential for this effect. CONCLUSION: The procedure of preconditioning is likely to be dependent on the mechanism of ATP-dependent inhibition of CytOx activity.


Assuntos
Trifosfato de Adenosina/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Miocárdio/enzimologia , Animais , Circulação Coronária/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Eletroforese em Gel de Poliacrilamida/métodos , Hemodinâmica/fisiologia , Masculino , Mitocôndrias Cardíacas/enzimologia , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/metabolismo , Técnicas de Cultura de Órgãos , Fosforilação , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
9.
Mol Cell Proteomics ; 7(9): 1714-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18541608

RESUMO

The influence of protein phosphorylation on the kinetics of cytochrome c oxidase was investigated by applying Western blotting, mass spectrometry, and kinetic measurements with an oxygen electrode. The isolated enzyme from bovine heart exhibited serine, threonine, and/or tyrosine phosphorylation in various subunits, except subunit I, by using phosphoamino acid-specific antibodies. The kinetics revealed slight inhibition of oxygen uptake in the presence of ATP, as compared with the presence of ADP. Mass spectrometry identified the phosphorylation of Ser-34 at subunit IV and Ser-4 and Thr-35 at subunit Va. Incubation of the isolated enzyme with protein kinase A, cAMP, and ATP resulted in serine and threonine phosphorylation of subunit I, which was correlated with sigmoidal inhibition kinetics in the presence of ATP. This allosteric ATP-inhibition of cytochrome c oxidase was also found in rat heart mitochondria, which had been rapidly prepared in the presence of protein phosphatase inhibitors. The isolated rat heart enzyme, prepared from the mitochondria by blue native gel electrophoresis, showed serine, threonine, and tyrosine phosphorylation of subunit I. It is concluded that the allosteric ATP-inhibition of cytochrome c oxidase, previously suggested to keep the mitochondrial membrane potential and thus the reactive oxygen species production in cells at low levels, occurs in living cells and is based on phosphorylation of cytochrome c oxidase subunit I.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Animais , Bovinos , Cinética , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Miocárdio/ultraestrutura , Fosforilação , Fosfosserina/análise , Fosfotreonina/análise , Fosfotirosina/análise , Ratos , Serina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...