Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 80(17): 8705-12, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26270193

RESUMO

Proton-coupled electron transfer (PCET) model systems combine one-electron oxidants and bases to generate net hydrogen atom acceptors. We have generated two persistent pyridyl-appended radical cations: 10-(pyrid-2-yl)-10H-phenothiazinium (PPT•+) and 3-(pyrid-2-yl)-10-methyl-10H-phenothiazinium (MPTP•+). EPR spectra and corresponding calculations indicate phenothiazinium radical cations with minimal spin on the pyridine nitrogen. Addition of hindered phenols causes the radical cations to decay, and protonated products and the corresponding phenoxyl radicals to form. The ΔG° values for the formation of intermediates (determined through cyclic voltammetry and pKa measurements) rule out a stepwise mechanism, and kinetic isotope effects support concerted proton­electron transfer (CPET) as the mechanism. Calculations indicate that the reaction of PPT•+ + tBu3PhOH undergoes a significant conformational change with steric interactions on the diabatic surface while maintaining the hydrogen bond; in contrast, MPTP•+ + tBu3PhOH maintains its conformation throughout the reaction. This difference is reflected in both experiment and calculations with ΔG(⧧)MPTP•+ < ΔG(⧧)PPT•+ despite ΔG°MPTP•+ > ΔG°PPT•+. Experimental results with 2,6-di-tert-butyl-4-methoxyphenol are similar. Hence, despite the structural similarity between the compounds, differences in the inner sphere component for CPET affect the kinetics.

2.
J Am Chem Soc ; 133(43): 17341-52, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21919508

RESUMO

To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh(2)NH(2) substituent (1). Spectroscopic, structural, thermochemical, and computational studies show that the two amino-phenols are very similar, except that the O···N distance (d(ON)) is >0.1 Å longer in 2 than in 1. The difference in d(ON) is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations (•)OAr-NH(3)(+) by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. 2 orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C(6)H(4)OMe)(3)(•+) (3a(+)) occurs at (1.4 ± 0.1) × 10(4) M(-1) s(-1), only a factor of 2 slower than the closely related reaction of 1 with N(C(6)H(4)OMe)(2)(C(6)H(4)Br)(•+) (3b(+)). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG° (2 + 3a(+)) = +0.078 V versus ΔG° (1 + 3b(+)) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δ ln(k)/Δ ln(K(eq))). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly anharmonic O···H···N potential energy surface and the influence of proton vibrational excited states.


Assuntos
Aminas/química , Fenóis/química , Prótons , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Estereoisomerismo , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 105(24): 8185-90, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18212121

RESUMO

A series of seven substituted 4,6-di-tert-butyl-2-(4,5-diarylimidazolyl)-phenols have been prepared and characterized, along with two related benzimidazole compounds. X-ray crystal structures of all of the compounds show that the phenol and imidazole rings are close to coplanar and are connected by an intramolecular ArOHN hydrogen bond. One-electron oxidation of these compounds occurs with movement of the phenolic proton to the imidazole base by concerted proton-electron transfer (CPET) to yield fairly stable distonic radical cations. These phenol-base compounds are a valuable system in which to examine the key features of CPET. Kinetic measurements of bimolecular CPET oxidations, with E(rxn) between +0.04 and -0.33 V, give rate constants from (6.3 +/- 0.6) x 10(2) to (3.0 +/- 0.6) x 10(6) M(-1) s(-1). There is a good correlation of log(k) with DeltaG degrees , with only one of the 15 rate constants falling more than a factor of 5.2 from the correlation line. Substituents on the imidazole affect the (O-HN) hydrogen bond, as marked by variations in the (1)H NMR and calculated vibrational spectra and geometries. Crystallographic d(ON) values appear to be more strongly affected by crystal packing forces. However, there is almost no correlation of rate constants with any of these measured or computed parameters. Over this range of compounds from the same structural family, the dominant contributor to the differences in rate constant is the driving force DeltaG degrees .


Assuntos
Benzimidazóis/química , Imidazóis/química , Fenóis/química , Prótons , Espécies Reativas de Oxigênio/química , Cristalografia por Raios X , Transporte de Elétrons , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Oxirredução , Fenóis/síntese química , Termodinâmica
4.
J Am Chem Soc ; 128(18): 6075-88, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16669677

RESUMO

Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.


Assuntos
Fenóis/química , Cristalografia por Raios X , Elétrons , Ligação de Hidrogênio , Cinética , Modelos Químicos , Oxirredução , Potenciometria , Prótons , Espectrofotometria Ultravioleta , Termodinâmica
5.
Photosynth Res ; 87(1): 3-20, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16437185

RESUMO

The coupling of proton and electron transfers is a key part of the chemistry of photosynthesis. The oxidative side of photosystem II (PS II) in particular seems to involve a number of proton-coupled electron transfer (PCET) steps in the S-state transitions. This mini-review presents an overview of recent studies of PCET model systems in the authors' laboratory. PCET is defined as a chemical reaction involving concerted transfer of one electron and one proton. These are thus distinguished from stepwise pathways involving initial electron transfer (ET) or initial proton transfer (PT). Hydrogen atom transfer (HAT) reactions are one class of PCET, in which H(+) and e (-) are transferred from one reagent to another: AH + B --> A + BH, roughly along the same path. Rate constants for many HAT reactions are found to be well predicted by the thermochemistry of hydrogen transfer and by Marcus Theory. This includes organic HAT reactions and reactions of iron-tris(alpha-diimine) and manganese-(mu-oxo) complexes. In PS II, HAT has been proposed as the mechanism by which the tyrosine Z radical (Y(Z)*) oxidizes the manganese cluster (the oxygen evolving complex, OEC). Another class of PCET reactions involves transfer of H(+) and e (-) in different directions, for instance when the proton and electron acceptors are different reagents, as in AH-B + C(+) --> A-HB(+) + C. The oxidation of Y(Z) by the chlorophyll P680 + has been suggested to occur by this mechanism. Models for this process - the oxidation of phenols with a pendent base - are described. The oxidation of the OEC by Y(Z)* could also occur by this second class of PCET reactions, involving an Mn-O-H fragment of the OEC. Initial attempts to model such a process using ruthenium-aquo complexes are described.


Assuntos
Modelos Biológicos , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Transporte de Elétrons , Oxirredução
7.
J Am Chem Soc ; 126(40): 12718-9, 2004 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-15469234

RESUMO

The hydrogen-bonded phenol 2-(aminodiphenylmethyl)-4,6-di-tert-butylphenol (HOAr-NH2) was prepared and oxidized in MeCN by a series of one-electron oxidants. The product is the phenoxyl radical in which the phenolic proton has transferred to the amine, *OAr-NH3+. The reaction of HOAr-NH2 and tris(p-tolyl)aminium ([N(tol)3]*+) to give *OAr-NH3+ + N(tol)3 has Keq = 2.0 +/- 0.5, follows second-order kinetics with k = (1.1 +/- 0.2) x 105 M-1 s-1 (DeltaG = 11 kcal mol-1), and has a primary isotope effect kH/kD = 2.4 +/- 0.4. Oxidation of HOAr-NH2 with [N(C6H4Br)3]*+ is faster, with k congruent with 4 x 107 M-1 s-1. The isotope effect, thermochemical arguments, and the dependence of the rate on driving force (DeltaDeltaG/DeltaDeltaG degrees = 0.53) all indicate that electron transfer from HOAr-NH2 must occur concerted with intramolecular proton transfer from the phenol to the amine (proton-coupled electron transfer, PCET). The data rule out stepwise paths that involve initial electron transfer to form the phenol radical cation *+HOAr-NH2 or that involve initial proton transfer to give the zwitterion -OAr-NH3+. The dependence of the electron-transfer rate constants on driving force can be fit with the adiabatic Marcus equation, yielding a large intrinsic barrier: lambda = 34 kcal mol-1 for reactions of HOAr-NH2 with NAr3*+.


Assuntos
Benzilaminas/química , Fenóis/química , Elétrons , Ligação de Hidrogênio , Cinética , Oxirredução , Prótons
8.
Biochim Biophys Acta ; 1655(1-3): 51-8, 2004 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15100016

RESUMO

Reactions that involve transfer of an electron and a proton can proceed by stepwise pathways involving initial electron transfer (ET) or initial proton transfer (PT), or by a concerted pathway without an intermediate. The concerted mechanism is termed proton-coupled electron transfer (PCET). Understanding such reactions requires knowledge of the thermodynamics of the possible ET, PT, and PCET steps. Many reactions have a large thermochemical bias favoring the PCET pathway. This bias is often sufficient to rule out stepwise mechanisms. The DeltaG degrees for ET, PT, or PCET has a strong influence on the rate of that step. Using the terminology of Marcus theory, PT and PCET reactions at C-H bonds have higher intrinsic barriers than such reactions at O-H or N-?H bonds. The intrinsic barriers to ET and PCET are often similar when there is a small intrinsic barrier to PT. Reactions with a thermochemical bias toward PCET and with similar intrinsic barriers for all the pathways are most likely to occur by concerted PCET.


Assuntos
Transporte de Elétrons , Força Próton-Motriz , Imidazóis/química , Imidazóis/metabolismo , Cinética , Modelos Biológicos , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...