Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37699057

RESUMO

Fission yeast is a model organism widely used for studies of eukaryotic cell biology. As such, it is subject to bright-field and fluorescent microscopy. Manual analysis of such data can be laborious and subjective. Therefore, we have developed pomBseen, an image analysis pipeline for the quantitation of fission yeast micrographs containing a bright-field channel and up to two fluorescent channels. It accepts a wide range of image formats and produces a table with the size and total and nuclear fluorescent intensities of the cells in the image. Benchmarking of the pipeline against manually annotated datasets demonstrates that it reliably segments cells and acquires their image parameters. Written in MATLAB, pomBseen is also available as a standalone application.


Assuntos
Schizosaccharomyces , Benchmarking , Corantes , Células Eucarióticas , Processamento de Imagem Assistida por Computador
2.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748990

RESUMO

Fission yeasts are an ancient group of fungal species that diverged from each other from tens to hundreds of million years ago. Among them is the preeminent model organism Schizosaccharomyces pombe, which has significantly contributed to our understandings of molecular mechanisms underlying fundamental cellular processes. The availability of the genomes of S. pombe and 3 other fission yeast species S. japonicus, S. octosporus, and S. cryophilus has enabled cross-species comparisons that provide insights into the evolution of genes, pathways, and genomes. Here, we performed genome sequencing on the type strain of the recently identified fission yeast species S. osmophilus and obtained a complete mitochondrial genome and a nuclear genome assembly with gaps only at rRNA gene arrays. A total of 5,098 protein-coding nuclear genes were annotated and orthologs for more than 95% of them were identified. Genome-based phylogenetic analysis showed that S. osmophilus is most closely related to S. octosporus and these 2 species diverged around 16 million years ago. To demonstrate the utility of this S. osmophilus reference genome, we conducted cross-species comparative analyses of centromeres, telomeres, transposons, the mating-type region, Cbp1 family proteins, and mitochondrial genomes. These analyses revealed conservation of repeat arrangements and sequence motifs in centromere cores, identified telomeric sequences composed of 2 types of repeats, delineated relationships among Tf1/sushi group retrotransposons, characterized the evolutionary origins and trajectories of Cbp1 family domesticated transposases, and discovered signs of interspecific transfer of 2 types of mitochondrial selfish elements.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Filogenia , Centrômero/genética , Centrômero/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
3.
Bioessays ; 44(11): e2200097, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36125226

RESUMO

The regulation of DNA replication is a fascinating biological problem both from a mechanistic angle-How is replication timing regulated?-and from an evolutionary one-Why is replication timing regulated? Recent work has provided significant insight into the first question. Detailed biochemical understanding of the mechanism and regulation of replication initiation has made possible robust hypotheses for how replication timing is regulated. Moreover, technical progress, including high-throughput, single-molecule mapping of replication initiation and single-cell assays of replication timing, has allowed for direct testing of these hypotheses in mammalian cells. This work has consolidated the conclusion that differential replication timing is a consequence of the varying probability of replication origin initiation. The second question is more difficult to directly address experimentally. Nonetheless, plausible hypotheses can be made and one-that replication timing contributes to the regulation of chromatin structure-has received new experimental support.


Assuntos
Replicação do DNA , Origem de Replicação , Animais , Cromatina/genética , Mamíferos/genética
4.
Mol Cell ; 82(7): 1246-1248, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395198

RESUMO

Claussin et al. (2022) present an elegant approach to replication fork mapping that combines single-molecule resolution with genome-wide coverage to provide unprecedented insight into the robust nature of DNA replication.


Assuntos
Replicação do DNA , Replicon , Replicon/genética
5.
Genes (Basel) ; 13(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205293

RESUMO

Stochastic models of replication timing posit that origin firing timing is regulated by origin firing probability, with early-firing origins having a high probability of firing and late-firing origins having a lower probability. However, they offer no insight into why one origin should have a higher firing probability than another. Here, a simple framework is suggested for how to approach the question by noting that the firing probability (f) must be the product of the stoichiometry of the MCM replicative helicase loaded at the origin (m) and the probability with which that MCM is activated (a). This framework emphasizes that mechanistic understanding of replication timing must focus on MCM loading and activation and can be simplified to the equation f = m*a.


Assuntos
Período de Replicação do DNA , Origem de Replicação , DNA Helicases/metabolismo , Replicação do DNA
6.
Curr Biol ; 31(21): R1414-R1420, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34752763

RESUMO

A fundamental and still mysterious question in cell biology is "How do cells know how big they are?". The fact that they do is evident from the strict maintenance of size homeostasis within populations of cells and has been verified by a variety of creative experiments over the past 100 years. An increasingly sophisticated understanding of cell-cycle-control mechanisms and innovations in cell imaging and analysis tools have allowed recent progress in proposing and testing models of cell-size control. Nonetheless, a biochemical understanding of how proposed cell-size mechanisms might work is only beginning to be developed. This primer introduces the field of cell-size control and discusses some of the questions that are yet to be answered.


Assuntos
Tamanho Celular , Homeostase
7.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157308

RESUMO

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Assuntos
Replicação do DNA/genética , Células Eucarióticas/fisiologia , Genoma Humano/genética , Linhagem Celular Tumoral , Cromatina/genética , Período de Replicação do DNA/genética , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Células HeLa , Humanos , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição/fisiologia
8.
PLoS Genet ; 17(3): e1009467, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764973

RESUMO

Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins' ability to recruit ORC and compete for MCM when MCM becomes limiting.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Origem de Replicação , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Indolacéticos/farmacologia , Proteínas de Manutenção de Minicromossomo/genética , Modelos Biológicos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Fase S/efeitos dos fármacos , Fase S/genética
9.
Genetics ; 217(1): 1-12, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33683349

RESUMO

Commitment to mitosis is regulated by cyclin-dependent kinase (CDK) activity. In the fission yeast Schizosaccharomyces pombe, the major B-type cyclin, Cdc13, is necessary and sufficient to drive mitotic entry. Furthermore, Cdc13 is also sufficient to drive S phase, demonstrating that a single cyclin can regulate alternating rounds of replication and mitosis, and providing the foundation of the quantitative model of CDK function. It has been assumed that Cig2, a B-type cyclin expressed only during S phase and incapable of driving mitosis in wild-type cells, was specialized for S-phase regulation. Here, we show that Cig2 is capable of driving mitosis. Cig2/CDK activity drives mitotic catastrophe-lethal mitosis in inviably small cells-in cells that lack CDK inhibition by tyrosine-phosphorylation. Moreover, Cig2/CDK can drive mitosis in the absence of Cdc13/CDK activity and constitutive expression of Cig2 can rescue loss of Cdc13 activity. These results demonstrate that in fission yeast, not only can the presumptive M-phase cyclin drive S phase, but the presumptive S-phase cyclin can drive M phase, further supporting the quantitative model of CDK function. Furthermore, these results provide an explanation, previously proposed on the basis of computational analyses, for the surprising observation that cells expressing a single-chain Cdc13-Cdc2 CDK do not require Y15 phosphorylation for viability. Their viability is due to the fact that in such cells, which lack Cig2/CDK complexes, Cdc13/CDK activity is unable to drive mitotic catastrophe.


Assuntos
Ciclina B/metabolismo , Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Ciclina B/genética , Quinases Ciclina-Dependentes/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
10.
Cell Cycle ; 18(8): 869-879, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30957637

RESUMO

How the rate of cell growth is influenced by cell size is a fundamental question of cell biology. The simple model that cell growth is proportional to cell size, based on the proposition that larger cells have proportionally greater synthetic capacity than smaller cells, leads to the prediction that the rate of cell growth increases exponentially with cell size. However, other modes of cell growth, including bilinear growth, have been reported. The distinction between exponential and bilinear growth has been explored in particular detail in the fission yeast Schizosaccharomyces pombe. We have revisited the mode of fission yeast cell growth using high-resolution time-lapse microscopy and find, as previously reported, that these two growth models are difficult to distinguish both because of the similarity in shapes between exponential and bilinear curves over the two-fold change in length of a normal cell cycle and because of the substantial biological and experimental noise inherent to these experiments. Therefore, we contrived to have cells grow more than twofold, by holding them in G2 for up to 8 h. Over this extended growth period, in which cells grow up to 5.5-fold, the two growth models diverge to the point that we can confidently exclude bilinear growth as a general model for fission yeast growth. Although the growth we observe is clearly more complicated than predicted by simple exponential growth, we find that exponential growth is a robust approximation of fission yeast growth, both during an unperturbed cell cycle and during extended periods of growth.


Assuntos
Divisão Celular/fisiologia , Crescimento Celular , Tamanho Celular , Schizosaccharomyces/citologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Homeostase/fisiologia , Cinética , Microscopia de Vídeo/métodos
11.
Cell ; 173(4): 1031-1044.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727662

RESUMO

Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.


Assuntos
Schizosaccharomyces/genética , Spliceossomos/metabolismo , Transcriptoma , Algoritmos , Íntrons , Splicing de RNA , RNA Fúngico/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
12.
Bioessays ; 40(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29283187

RESUMO

Unstable Accumulating Activator models for cellular size control propose an activator that accumulates in a size-dependent manner and triggers cell cycle progression once it has reached a certain threshold. Having a short half life makes such an activator responsive to changes in cell size and makes specific predictions for how cells respond to perturbation. In particular, it explains the curious phenomenon of excess mitotic delay. Excess mitotic delay, first observed in Tetrahymena in the '50s, is a phenomenon in which a pulse of protein synthesis inhibition causes a delay in mitotic entry that is longer than the pulse and that gets longer the later in the cell cycle the pulse is delivered. The interpretation of this phenomenon championed by Zeuthen and Mitchison in the '60s and '70s is that an unstable activator of mitosis is degraded during the pulse and has to be resynthesized to a threshold level to trigger mitosis; small cells have more time to resynthesize the activator before mitosis and so suffer less excess delay, whereas, large cells have less time thus suffer greater excess delay. Fifty years later, with our detailed understanding of cell cycle biochemistry, we can identify and test candidate Unstable Accumulating Activators. Here I review the field and further develop this concept.


Assuntos
Tamanho Celular , Mitose/fisiologia , Biologia Celular , Ciclo Celular/fisiologia , Tetrahymena/citologia
13.
PLoS Genet ; 13(8): e1006958, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806726

RESUMO

In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents-MMS, 4NQO and bleomycin-that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.


Assuntos
Dano ao DNA , Replicação do DNA , Regulação Fúngica da Expressão Gênica , Pontos de Checagem da Fase S do Ciclo Celular , Schizosaccharomyces/genética , 4-Nitroquinolina-1-Óxido , Bleomicina , DNA Fúngico/genética , Metanossulfonato de Metila , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
Sci Adv ; 3(5): e1700298, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560351

RESUMO

Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase-dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Replicação do DNA/fisiologia , Células Eritroides/metabolismo , Fase S/fisiologia , Animais , Inibidor de Quinase Dependente de Ciclina p57/genética , Células Eritroides/citologia , Feminino , Camundongos , Camundongos Mutantes , Transcrição Gênica/fisiologia
15.
Dev Cell ; 41(6): 638-651.e5, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28633018

RESUMO

Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance.


Assuntos
Aneuploidia , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica/imunologia , Segregação de Cromossomos/genética , Segregação de Cromossomos/imunologia , Dosagem de Genes/genética , Instabilidade Genômica/genética , Humanos , Cariótipo , Neoplasias/genética , Neoplasias/imunologia
16.
Curr Biol ; 27(10): 1491-1497.e4, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28479325

RESUMO

Proper cell size is essential for cellular function. Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell-size homeostasis are largely mysterious [1]. Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range and returns the population average to that range if it is perturbed [1, 2]. Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition [3], whereas bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average [4-6]. Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size-dependent expression of the mitotic activator Cdc25. cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cells grow and providing a mechanism for cells to trigger cell division when they reach a threshold concentration of Cdc25. Because regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a widespread solution to the problem of size control in eukaryotes.


Assuntos
Mitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fase G2 , Interfase
17.
Yeast ; 34(8): 323-334, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28423198

RESUMO

The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose-response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on ß-estradiol-regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3 EV, turns on quickly, can reach a maximal induction of 20-fold, and exhibits a linear dose response over its entire induction range, with few off-target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by ß-estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Estradiol/metabolismo , Regulação Fúngica da Expressão Gênica , Genética Microbiana/métodos , Biologia Molecular/métodos , Regiões Promotoras Genéticas/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento
18.
Genes (Basel) ; 8(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218681

RESUMO

Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.

20.
Proc Natl Acad Sci U S A ; 113(26): E3676-85, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298342

RESUMO

The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase-specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.


Assuntos
Dano ao DNA , Fase S , Schizosaccharomyces/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Metanossulfonato de Metila/toxicidade , Fase S/efeitos dos fármacos , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...