Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Digit Imaging ; 34(4): 922-931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34327625

RESUMO

Our objective is to investigate the reliability and usefulness of anatomic point-based lung zone segmentation on chest radiographs (CXRs) as a reference standard framework and to evaluate the accuracy of automated point placement. Two hundred frontal CXRs were presented to two radiologists who identified five anatomic points: two at the lung apices, one at the top of the aortic arch, and two at the costophrenic angles. Of these 1000 anatomic points, 161 (16.1%) were obscured (mostly by pleural effusions). Observer variations were investigated. Eight anatomic zones then were automatically generated from the manually placed anatomic points, and a prototype algorithm was developed using the point-based lung zone segmentation to detect cardiomegaly and levels of diaphragm and pleural effusions. A trained U-Net neural network was used to automatically place these five points within 379 CXRs of an independent database. Intra- and inter-observer variation in mean distance between corresponding anatomic points was larger for obscured points (8.7 mm and 20 mm, respectively) than for visible points (4.3 mm and 7.6 mm, respectively). The computer algorithm using the point-based lung zone segmentation could diagnostically measure the cardiothoracic ratio and diaphragm position or pleural effusion. The mean distance between corresponding points placed by the radiologist and by the neural network was 6.2 mm. The network identified 95% of the radiologist-indicated points with only 3% of network-identified points being false-positives. In conclusion, a reliable anatomic point-based lung segmentation method for CXRs has been developed with expected utility for establishing reference standards for machine learning applications.


Assuntos
Pulmão , Radiografia Torácica , Humanos , Pulmão/diagnóstico por imagem , Aprendizado de Máquina , Radiologistas , Reprodutibilidade dos Testes
2.
J Med Imaging (Bellingham) ; 7(1): 016501, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32042858

RESUMO

DICOM header information is frequently used to classify medical image types; however, if a header is missing fields or contains incorrect data, the utility is limited. To expedite image classification, we trained convolutional neural networks (CNNs) in two classification tasks for thoracic radiographic views obtained from dual-energy studies: (a) distinguishing between frontal, lateral, soft tissue, and bone images and (b) distinguishing between posteroanterior (PA) or anteroposterior (AP) chest radiographs. CNNs with AlexNet architecture were trained from scratch. 1910 manually classified radiographs were used for training the network to accomplish task (a), then tested with an independent test set (3757 images). Frontal radiographs from the two datasets were combined to train a network to accomplish task (b); tested using an independent test set of 1000 radiographs. ROC analysis was performed for each trained CNN with area under the curve (AUC) as a performance metric. Classification between frontal images (AP/PA) and other image types yielded an AUC of 0.997 [95% confidence interval (CI): 0.996, 0.998]. Classification between PA and AP radiographs resulted in an AUC of 0.973 (95% CI: 0.961, 0.981). CNNs were able to rapidly classify thoracic radiographs with high accuracy, thus potentially contributing to effective and efficient workflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...