Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 202: 113991, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078144

RESUMO

Universal and fast bacterial detection technology is imperative for food safety analyses and diagnosis of infectious diseases. Although surface-enhanced Raman spectroscopy (SERS) has recently emerged as a powerful solution for detecting diverse microorganisms, its widespread application has been hampered by strong signals from surrounding media that overwhelm target signals and require time-consuming and tedious bacterial separation steps. By using SERS analysis boosted with a newly proposed deep learning model named dual-branch wide-kernel network (DualWKNet), a markedly simpler, faster, and effective route to classify signals of two common bacteria E. coli and S. epidermidis and their resident media without any separation procedures is demonstrated. With outstanding classification accuracies up to 98%, the synergistic combination of SERS and deep learning serves as an effective platform for "separation-free" detection of bacteria in arbitrary media with short data acquisition times and small amounts of training data.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Redes Neurais de Computação , Análise Espectral Raman/métodos , Staphylococcus epidermidis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...