Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(4): e22861, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929047

RESUMO

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Assuntos
Hipomineralização do Esmalte Dentário , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ameloblastos/metabolismo , Hipomineralização do Esmalte Dentário/genética , Hipomineralização do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Concentração de Íons de Hidrogênio , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34662808

RESUMO

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Assuntos
Ameloblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/genética , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
3.
J Biol Chem ; 295(45): 15328-15341, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868297

RESUMO

Dental enamel, the hardest tissue in the human body, is derived from dental epithelial cell ameloblast-secreted enamel matrices. Enamel mineralization occurs in a strictly synchronized manner along with ameloblast maturation in association with ion transport and pH balance, and any disruption of these processes results in enamel hypomineralization. G protein-coupled receptors (GPCRs) function as transducers of external signals by activating associated G proteins and regulate cellular physiology. Tissue-specific GPCRs play important roles in organ development, although their activities in tooth development remain poorly understood. The present results show that the adhesion GPCR Gpr115 (Adgrf4) is highly and preferentially expressed in mature ameloblasts and plays a crucial role during enamel mineralization. To investigate the in vivo function of Gpr115, knockout (Gpr115-KO) mice were created and found to develop hypomineralized enamel, with a larger acidic area because of the dysregulation of ion composition. Transcriptomic analysis also revealed that deletion of Gpr115 disrupted pH homeostasis and ion transport processes in enamel formation. In addition, in vitro analyses using the dental epithelial cell line cervical loop-derived dental epithelial (CLDE) cell demonstrated that Gpr115 is indispensable for the expression of carbonic anhydrase 6 (Car6), which has a critical role in enamel mineralization. Furthermore, an acidic condition induced Car6 expression under the regulation of Gpr115 in CLDE cells. Thus, we concluded that Gpr115 plays an important role in enamel mineralization via regulation of Car6 expression in ameloblasts. The present findings indicate a novel function of Gpr115 in ectodermal organ development and clarify the molecular mechanism of enamel formation.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Ratos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética
4.
Front Cell Dev Biol ; 8: 841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984333

RESUMO

Dental epithelial stem cells give rise to four types of dental epithelial cells: inner enamel epithelium (IEE), outer enamel epithelium (OEE), stratum intermedium (SI), and stellate reticulum (SR). IEE cells further differentiate into enamel-forming ameloblasts, which play distinct roles, and are essential for enamel formation. These are conventionally classified by their shape, although their transcriptome and biological roles are yet to be fully understood. Here, we aimed to use single-cell RNA sequencing to clarify the heterogeneity of dental epithelial cell types. Unbiased clustering of 6,260 single cells from incisors of postnatal day 7 mice classified them into two clusters of ameloblast, IEE/OEE, SI/SR, and two mesenchymal populations. Secretory-stage ameloblasts expressed Amel and Enam were divided into Dspp + and Ambn + ameloblasts. Pseudo-time analysis indicated Dspp + ameloblasts differentiate into Ambn + ameloblasts. Further, Dspp and Ambn could be stage-specific markers of ameloblasts. Gene ontology analysis of each cluster indicated potent roles of cell types: OEE in the regulation of tooth size and SR in the transport of nutrients. Subsequently, we identified novel dental epithelial cell marker genes, namely Pttg1, Atf3, Cldn10, and Krt15. The results not only provided a resource of transcriptome data in dental cells but also contributed to the molecular analyses of enamel formation.

5.
J Cell Biol ; 218(10): 3506-3525, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31541017

RESUMO

Ischemic stroke causes blood-brain barrier (BBB) breakdown due to significant damage to the integrity of BBB components. Recent studies have highlighted the importance of pericytes in the repair process of BBB functions triggered by PDGFRß up-regulation. Here, we show that perlecan, a major heparan sulfate proteoglycan of basement membranes, aids in BBB maintenance and repair through pericyte interactions. Using a transient middle cerebral artery occlusion model, we found larger infarct volumes and more BBB leakage in conditional perlecan (Hspg2)-deficient (Hspg2 - / - -TG) mice than in control mice. Control mice showed increased numbers of pericytes in the ischemic lesion, whereas Hspg2 - / - -TG mice did not. At the mechanistic level, pericytes attached to recombinant perlecan C-terminal domain V (perlecan DV, endorepellin). Perlecan DV enhanced the PDGF-BB-induced phosphorylation of PDGFRß, SHP-2, and FAK partially through integrin α5ß1 and promoted pericyte migration. Perlecan therefore appears to regulate pericyte recruitment through the cooperative functioning of PDGFRß and integrin α5ß1 to support BBB maintenance and repair following ischemic stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Pericitos/metabolismo , Animais , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Proteoglicanas de Heparan Sulfato/administração & dosagem , Proteoglicanas de Heparan Sulfato/deficiência , Infarto da Artéria Cerebral Média/patologia , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Biochem Biophys Res Commun ; 518(4): 672-677, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31470976

RESUMO

Link protein is encoded by the Hapln1 gene and is a prototypical protein found in the cartilage matrix. It acts as an important component of the endochondral skeleton during early development. To study its transcriptional regulation, promoter fragments derived from the link protein gene were coupled to the ß-galactosidase reporter and used to study in vivo transgene expression in mice. In day 15.5 mouse embryos, a link promoter fragment spanning -1020 to +40 nucleotides demonstrated highly specific ß-galactosidase staining of skeletal structures, including the appendicular and axial cartilaginous tissues. Two shorter promoter fragments, spanning -690 to +40 and -315 to +40 nucleotides, demonstrated limb- and genitalia-specific expression resembling that of homeodomain-regulated tissues. Bioinformatic analysis revealed a highly conserved, Hox-like binding site (HLBS) at approximately -220 bp of the promoter, shared by both constructs, which contained the Hox-core consensus sequence TAATTA. Electromobility shift assays demonstrated binding of Hox-B4 recombinant protein to the HLBS, which was eliminated with nucleotide substitutions within the core-binding element. Co-transfection analysis of the HLBS demonstrated a 22-fold transcriptional activation by HoxA9 expression, which was ablated with a substitution within the core HLBS element. Together these findings establish promoter regions within the link protein gene that are important for in vivo expression and identify the potential role of homeodomain-containing proteins in controlling cartilage and limb gene expression.


Assuntos
Cartilagem/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas/genética , Proteoglicanas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Sequência de Bases , Cartilagem/embriologia , Proteínas da Matriz Extracelular/metabolismo , Extremidades/embriologia , Genitália/embriologia , Genitália/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Transgênicos , Proteoglicanas/metabolismo , Homologia de Sequência do Ácido Nucleico , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
7.
J Invest Dermatol ; 139(4): 909-918, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30389492

RESUMO

Pannexin-3 (Panx3) is a gap junction protein that is required for regulating cell cycle exit and the differentiation of osteoblasts and chondrocytes during skeletal development. However, the role of Panx3 in skin tissue regeneration remains unclear. After dorsal skin punch biopsies, Panx3-knockout mice exhibited a significant delay in wound healing with insufficient re-epithelialization, decreased inflammatory reaction, and reduced collagen remodeling. Panx3 expression coincided with inflammatory reactions both in vivo and in vitro. By applying exogenous tumor necrosis factor-α to mimic inflammation in vitro, Panx3 expression was induced in HaCaT cells. In addition, Panx3 depletion reduced epithelial-mesenchymal transition during skin wound healing. A protein essential for signaling in epithelial-mesenchymal transition, transforming growth factor-ß interacted with Panx3 by modulating intracellular adenosine triphosphate levels and thereby enhanced HaCaT cell migration ability with Panx3 overexpression. In conclusion, Panx3 plays a key role in the skin wound healing process by controlling keratinocytes and keratinocyte-mesenchyme cross-talk via hemichannel and endoplasmic reticulum Ca2+ channel functions, which differs from another gap junction, connexin 43 (Cx43), during skin wound healing.


Assuntos
Conexinas/metabolismo , Regulação da Expressão Gênica , RNA/genética , Pele/metabolismo , Cicatrização , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Conexinas/biossíntese , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Pele/lesões , Pele/patologia
8.
J Biol Chem ; 294(10): 3406-3418, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30504223

RESUMO

The development of ectodermal organs, such as teeth, requires epithelial-mesenchymal interactions. Basic helix-loop-helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both in vitro and in vivo evidence that AmeloD is important in tooth development. We created AmeloD-knockout (KO) mice to identify the in vivo functions of AmeloD that are critical for tooth morphogenesis. We found that AmeloD-KO mice developed enamel hypoplasia and small teeth because of increased expression of E-cadherin in inner enamel epithelial (IEE) cells, and it may cause inhibition of the cell migration. We used the CLDE dental epithelial cell line to conduct further mechanistic analyses to determine whether AmeloD overexpression in CLDE cells suppresses E-cadherin expression and promotes cell migration. Knockout of epiprofin (Epfn), another transcription factor required for tooth morphogenesis and development, and analysis of AmeloD expression and deletion revealed that AmeloD also contributed to multiple tooth formation in Epfn-KO mice by promoting the invasion of dental epithelial cells into the mesenchymal region. Thus, AmeloD appears to play an important role in tooth morphogenesis by modulating E-cadherin and dental epithelial-mesenchymal interactions. These findings provide detailed insights into the mechanism of ectodermal organ development.


Assuntos
Movimento Celular , Células Epiteliais/citologia , Dente/citologia , Fatores Genéricos de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Linhagem Celular , Proliferação de Células , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Camundongos , Dente/metabolismo
9.
BMC Microbiol ; 15: 205, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26449888

RESUMO

BACKGROUND: There is an urgent need for a simple and accurate test for the diagnosis of human Mycobacterium tuberculosis, the infectious agent causing tuberculosis (TB). Here we describe a serological test based on light emitting recombinant proteins for the diagnosis of pulmonary Mycobacterium tuberculosis infection. METHODS: Luciferase Immunoprecipitation Systems (LIPS), a fluid-phase immunoassay, was used to examine antibody responses against a panel of 24 different M. tuberculosis proteins. Three different strategies were used for generating the constructs expressing the recombinant fusion M. tuberculosis proteins with luciferase: synthetic gene synthesis, Gateway recombination cloning, and custom PCR synthesis. A pilot cohort of African pulmonary TB patients was used for initial antibody screening and confirmatory studies with selected antigens were performed with a cohort from Thailand and healthy US blood donors. In addition to testing M. tuberculosis antigens separately, a mixture that tested seven antigens simultaneously was evaluated for diagnostic performance. RESULTS: LIPS testing of a pilot set of serum samples from African pulmonary TB patients identified a potential subset of diagnostically useful M. tuberculosis antigens. Evaluation of a second independent cohort from Thailand validated highly significant antibody responses against seven antigens (PstS1, Rv0831c, FbpA, EspB, bfrB, HspX and ssb), which often showed robust antibody levels up to 50- to 1000-fold higher than local community controls. Marked heterogeneity of antibody responses was observed in the patients and the combined results demonstrated 73.5% sensitivity and 100% specificity for detection of pulmonary TB. A LIPS test simultaneously employing the seven M. tuberculosis antigen as a mixture matched the combined diagnostic performance of the separate tests, but showed an even higher diagnostic sensitivity (90%) when a cut-off based on healthy US blood donors was used. CONCLUSION: A LIPS immunoassay employing multiple M. tuberculosis antigens shows promise for the rapid and quantitative serological detection of pulmonary TB.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Imunoprecipitação/métodos , Mycobacterium tuberculosis/imunologia , Testes Sorológicos/métodos , Tuberculose Pulmonar/diagnóstico , África , Estudos de Coortes , Humanos , Luciferases/análise , Projetos Piloto , Sensibilidade e Especificidade , Tailândia , Estados Unidos
10.
J Infect Dis ; 209(10): 1613-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24286982

RESUMO

Quantitative humoral profiling of recent samples from a human immunodeficiency virus (HIV)-infected adult who was cured following a delta32/delta32 CCR5 stem cell transplant in 2007 revealed no antibodies against p24, matrix, nucleocapsid, integrase, protease, and gp120, but low levels of antibodies against reverse transcriptase, tat, and gp41. Antibody levels to these HIV proteins persisted at high and stable levels in most noncontrollers, elite controllers, and antiretroviral-treated subjects, but a rare subset of controllers had low levels of antibodies against matrix, reverse transcriptase, integrase, and/or protease. Comprehensive HIV antibody profiles may prove useful for monitoring curative interventions.


Assuntos
Anticorpos Anti-HIV/sangue , Infecções por HIV/terapia , Transplante de Células-Tronco , Adulto , DNA Viral , Regulação Viral da Expressão Gênica , Anticorpos Anti-HIV/imunologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Imunidade Humoral , Masculino
11.
AIDS Res Treat ; 2012: 634523, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22924124

RESUMO

Although HIV-positive patients are at higher risk for developing a variety of infection-related cancers, the prevalence of infections with the seven known cancer-associated viruses has not been studied. Luciferase immunoprecipitation systems were used to evaluate antiviral antibodies in four 23-person groups: healthy blood donors and HIV-infected patients with oral hairy leukoplakia (OLP), Kaposi's sarcoma (KS), or non-Hodgkin lymphoma (NHL). Antibody profiling revealed that all HIV-positive individuals were strongly seropositive for anti-gp41 and antireverse transcriptase antibodies. However, anti-p24 HIV antibody levels were highly variable and some OLP and KS patients demonstrated weak or negative responses. Profiling two EBV antigens revealed no statistical difference in antibody levels among the three HIV-infected groups. A high frequency of KSHV infection was detected in HIV patients including 100% of KS, 78% of OLP, and 57% of NHL patients. Most HIV-infected subjects (84%) showed anti-HBV core antibodies, but only a few showed antibodies against HCV. MCV seropositivity was also common (94%) in the HIV-infected individuals and KS patients showed statistically higher antibody levels compared to the OLP and NHL patients. Overall, 68% of the HIV-infected patients showed seropositivity with at least four cancer-associated viruses. Antibody profiles against these and other infectious agents could be useful for enhancing the clinical management of HIV patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...